Synthesis 2016; 48(16): 2523-2539
DOI: 10.1055/s-0035-1561648
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution

Pierre-Georges Echeverria
PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: [email protected]   Email: [email protected]
,
Tahar Ayad
PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: [email protected]   Email: [email protected]
,
Phannarath Phansavath*
PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: [email protected]   Email: [email protected]
,
Virginie Ratovelomanana-Vidal*
PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 21 March 2016

Accepted after revision: 18 April 2016

Publication Date:
07 June 2016 (online)


Abstract

The transition-metal-catalyzed asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH) of α- and β-substituted ketone or imine derivatives are efficient methods for accessing chiral alcohols or amines bearing up to three stereogenic centers through a dynamic kinetic resolution (DKR) process. This review provides a summary of recent work in this field, focusing on the development of new catalytic systems and on the extension of these asymmetric reductions to new classes of substrates.

1 Introduction

2 Asymmetric Hydrogenation via Dynamic Kinetic Resolution

2.1 α-Substituted Ketones

2.2. α-Substituted β-Keto Esters and Amides

2.3 α-Substituted β-Keto Phosphonates and Sulfones

2.4 α,α′-Disubstituted Cyclic Ketones

2.5 α,β-Disubstituted Cyclic Ketones

2.6 Imine Derivatives

3 Asymmetric Transfer Hydrogenation via Dynamic Kinetic Resolution

3.1 α-Substituted β-Diketones and Ketones

3.2 α-Substituted β-Keto Esters, Amides and Phosphonates

3.3 β-Substituted α-Keto Esters and Phosphonates

3.4 β-Substituted γ-Keto Esters

3.5 β-Alkoxy Ketones

3.6 Imine Derivatives

4 Conclusion

 
  • References

    • 1a Noyori R. Angew. Chem. Int. Ed. 2013; 52: 79
    • 1b Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 8587

      For comprehensive reviews and chapters on asymmetric hydrogenation (AH), see:
    • 3a Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 3b Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
    • 3c Genêt J.-P. Acc. Chem. Res. 2003; 36: 908
    • 3d Blaser H.-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal. 2003; 345: 103
    • 3e Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 3f Shang G, Li W, Zhang X In Catalytic Asymmetric Synthesis . Ojima I. John Wiley & Sons; New York: 2010. 3rd ed. 343
    • 3g Xie JH, Zhu SF, Zhou QL. Chem. Rev. 2011; 111: 1713
    • 3h Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
    • 3i Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 3j Chen Q.-A, Ye Z.-S, Duan Y, Zhou Y.-G. Chem. Soc. Rev. 2013; 42: 497
    • 3k Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
    • 3l Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2015; 47: 460

      For comprehensive reviews and chapters on asymmetric transfer hydrogenation (ATH), see:
    • 4a Zassinovich G, Mestroni G, Gladiali S. Chem. Rev. 1992; 92: 1051
    • 4b de Graauw CF, Peters JA, van Bekkum H, Huskens J. Synthesis 1994; 1007
    • 4c Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
    • 4d Palmer MJ, Wills M. Tetrahedron: Asymmetry 1999; 10: 2045
    • 4e Pàmies O, Backvall J.-E. Chem. Eur. J. 2001; 7: 5052
    • 4f Everaere K, Mortreux A, Carpentier J.-F. Adv. Synth. Catal. 2003; 345: 67
    • 4g Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
    • 4h Joseph SM, Samec JS, Bäckvall J.-E, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
    • 4i Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
    • 4j Blacker AJ In Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007: 1215
    • 4k Wang C, Wu X, Xiao J. Chem. Asian J. 2008; 3: 1750
    • 4l Ikariya T. Bull. Chem. Soc. Jpn. 2011; 84: 1
    • 4m Bartoszewicz A, Ahlsten N, Martín-Matute B. Chem. Eur. J. 2013; 19: 7274
    • 4n Slagbrand H, Lundberg H, Adolfsson H. Chem. Eur. J. 2014; 20: 16102
    • 4o Štefane B, Požgan F. Catal. Rev. 2014; 56: 82
    • 4p Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 4q Foubelo F, Nájera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769

      For the use of AH in industrial processes, see:
    • 5a Ager DJ, de Vries AH. M, de Vries JG. Chem. Soc. Rev. 2012; 41: 3340

    • For the use of ATH in industrial processes, see:
    • 5b Cotarca L, Verzini M, Volpicelli R. Chim. Oggi 2014; 32: 36

    • For the complementarity between AH and ATH, see:
    • 5c Verzijl GK. M, de Vries AH. M, de Vries JG, Kapitan P, Dax T, Helms M, Nazir Z, Skranc W, Imboden C, Stichler J, Ward RA, Abele S, Lefort L. Org. Process Res. Dev. 2013; 17: 1531
    • 6a Noyori R, Tokunaga M, Kitamura M. Bull. Chem. Soc. Jpn. 1995; 68: 36
    • 6b Caddick S, Jenkins K. Chem. Soc. Rev. 1996; 25: 447
    • 6c Ward RS. Tetrahedron: Asymmetry 1995; 6: 1475
    • 6d Sturmer R. Angew. Chem. Int. Ed. 1997; 36: 1173
    • 6e El Gihani MT, Williams JM. J. Curr. Opin. Chem. Biol. 1999; 3: 11
    • 6f Ratovelomanana-Vidal V, Genêt J.-P. Can. J. Chem. 2000; 851: 846
    • 6g Huerta FF, Minidis AB. E, Bäckvall J. Chem. Soc. Rev. 2001; 30: 321
    • 6h Faber K. Chem. Eur. J. 2001; 7: 5005
    • 6i Pàmies O, Bäckvall J.-E. Chem. Rev. 2003; 103: 3247
    • 6j Pellissier H. Tetrahedron 2003; 59: 8291
    • 6k Turner NJ. Curr. Opin. Chem. Biol. 2004; 8: 114
    • 6l Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 6m Martín-Matute B, Bäckvall J.-E. Curr. Opin. Chem. Biol. 2007; 11: 226
    • 6n Pellissier H. Tetrahedron 2008; 64: 1563
    • 6o Pellissier H. Tetrahedron 2011; 67: 3769
  • 7 Tai A, Watanabe H, Harada T. Bull. Chem. Soc. Jpn. 1979; 52: 1468
  • 8 Noyori R, Ikeda T, Ohkuma T, Widhalm M, Kitamura M, Takaya H, Akutagawa S, Sayo N, Saito T. J. Am. Chem. Soc. 1989; 111: 9134
  • 9 Jugé S, Genêt J.-P, Mallard S. French Patent 89/11 159, 1989 ; WO 91/02588, 1991.
  • 10 Kitamura M, Tokunaga M, Noyori R. J. Am. Chem. Soc. 1993; 115: 144
  • 11 Kitamura M, Tokunaga M, Noyori R. Tetrahedron 1993; 49: 1853
  • 12 Xie J.-H, Zhou Q.-L. Aldrichimica Acta 2015; 48: 33
  • 13 Pellissier H. Adv. Synth. Catal. 2011; 353: 659
    • 14a Applegate GA, Berkowitz DB. Adv. Synth. Catal. 2015; 357: 1619
    • 14b Rachwalski M, Vermue N, Rutjes FP. J. T. Chem. Soc. Rev. 2013; 42: 9268
  • 15 Akashi M, Arai N, Inoue T, Ohkuma T. Adv. Synth. Catal. 2011; 353: 1955
  • 16 Chung JY. L, Steinhuebel D, Krska S.-W, Hartner F.-W, Cai C, Rosen J, Mancheno D.-E, Pei T, DiMichele L, Ball R.-G, Chen C.-Y, Tan L, Alorati A.-D, Brewer S.-E, Scott J.-P. Org. Process Res. Dev. 2012; 16: 1832
    • 17a Cheng L.-J, Xie J.-H, Chen Y, Wang L.-X, Zhou Q.-L. Adv. Synth. Catal. 2012; 354: 1105
    • 17b Li G, Xie J.-H, Hou J, Zhu S.-F, Zhou Q.-L. Adv. Synth. Catal. 2013; 355: 1597
    • 17c Cheng L.-J, Xie J.-H, Chen Y, Wang L.-X, Zhou Q.-L. Org. Lett. 2013; 15: 764
  • 18 Cheng J.-Q, Xie J.-H, Bao D.-H, Zhou Q.-L. Org. Lett. 2012; 14: 2714
  • 19 Chen C.-Y, Weisel M. Synlett 2013; 24: 189
    • 20a Phansavath P, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P. Eur. J. Org. Chem. 2000; 3903
    • 20b Lavergne D, Mordant C, Ratovelomanana-Vidal V, Genêt J.-P. Org. Lett. 2001; 3: 1909
    • 20c Mordant C, Cano de Andrade MC, Touati R, Ben Hassine B, Ratovelomanana-Vidal V, Genêt J.-P. Synthesis 2003; 2405
    • 20d Mordant C, Dunkelmann P, Ratovelomanana-Vidal V, Genêt J.-P. Chem. Commun. 2004; 1296
    • 20e Mordant C, Dunkelmann P, Ratovelomanana-Vidal V, Genêt J.-P. Eur. J. Org. Chem. 2004; 3017
    • 20f Mordant C, Reymond S, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron 2004; 60: 9715
    • 20g Labeeuw O, Phansavath P, Genêt J.-P. Tetrahedron: Asymmetry 2004; 15: 1899
    • 20h Mordant C, Reymond S, Tone H, Lavergne D, Touati R, Ben Hassine B, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron 2007; 63: 6115
    • 20i Tone H, Buchotte M, Mordant C, Guittet E, Ayad T, Ratovelomanana-Vidal V. Org. Lett. 2009; 11: 1995
    • 20j Prevost S, Gauthier S, Cano de Andrade MC, Mordant C, Touati R, Lesot P, Savignac P, Ayad T, Phansavath P, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron: Asymmetry 2010; 21: 1436
    • 20k Cartigny D, Püntener K, Ayad T, Scalone M, Ratovelomanana-Vidal V. Org. Lett. 2010; 12: 3788
  • 21 Prévost S, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Adv. Synth. Catal. 2011; 353: 3213
    • 22a Makino K, Goto T, Hiroki Y, Hamada Y. Angew. Chem. Int. Ed. 2004; 43: 882
    • 22b See also: Hamada Y. Chem. Rec. 2014; 14: 235
    • 23a Duprat de Paule S, Champion N, Ratovelomanana-Vidal V, Genêt J.-P, Dellis P. French Patent 2830254, 2001 ; WO 03029259, 2003
    • 23b Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 1931
    • 23c Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Deschaux G, Dellis P. Org. Process Res. Dev. 2003; 7: 399
    • 23d Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5799
    • 23e Jeulin S, Champion N, Dellis P, Ratovelomanana-Vidal V, Genêt J.-P. Synthesis 2005; 3666
  • 24 Yamagata T, Tadaoka H, Nagata M, Hirao T, Kataoka Y, Ratovelomanana-Vidal V, Genet J.-P, Mashima K. Organometallics 2006; 25: 2505
  • 25 Echeverria PG, Férard C, Cornil J, Guérinot A, Cossy J, Phansavath P, Ratovelomanana-Vidal V. Synlett 2014; 2761
  • 26 Echeverria P.-G, Prévost S, Cornil J, Férard C, Reymond S, Guérinot A, Cossy J, Ratovelomanana-Vidal V, Phansavath P. Org. Lett. 2014; 16: 2390
  • 27 Magnus NA, Astleford BA, Laird DL. T, Maloney TD, McFarland AD, Rizzo JR, Ruble JC, Stephenson GA, Wepsiec JP. J. Org. Chem. 2013; 78: 5768
  • 28 Li X, Tao X, Ma X, Li W, Zhao M, Xie X, Ayad T, Ratovelomanana-Vidal V, Zhang Z. Tetrahedron 2013; 69: 7152
  • 29 Tao X, Li W, Li X, Xie X, Zhang Z. Org. Lett. 2013; 15: 72
  • 30 Tao X, Li W, Ma X, Li X, Fan W, Zhu L, Xie X, Zhang Z. J. Org. Chem. 2012; 77: 8401
  • 31 Huang X.-F, Zhang S.-Y, Geng Z.-C, Kwok C.-Y, Liu P, Li H.-Y, Wang X.-W. Adv. Synth. Catal. 2013; 355: 2860
  • 32 Liu C, Xie J.-H, Li Y.-L, Chen J.-Q, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 593
  • 33 Lin H, Xiao L.-J, Zhou M.-J, Yu H.-M, Xie J.-H, Zhou Q.-L. Org. Lett. 2016; 18: 1434
  • 34 Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
  • 35 Shi L, Ye Z.-S, Cao L.-L, Guo R.-N, Hu Y, Zhou Y.-G. Angew. Chem. Int. Ed. 2012; 51: 8286
  • 36 Doering WE, Young RW. J. Am. Chem. Soc. 1950; 72: 631
  • 37 Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 7562
  • 38 Schwink L, Ireland T, Püntener K, Knochel P. Tetrahedron: Asymmetry 1998; 9: 1143
  • 39 Murata K, Okano K, Miyagi M, Iwane H, Noyori R, Ikariya T. Org. Lett. 1999; 1: 1119
  • 40 Wu Y, Geng Z, Bai J, Zhang Y. Chin. J. Chem. 2011; 29: 1467
    • 41a Xu F, Zacuto MJ, Kohmura Y, Rosen J, Gibb A, Alam M, Scott J, Tschaen D. Org. Lett. 2014; 16: 5422
    • 41b Chung JY. L, Scott JP, Anderson C, Bishop B, Bremeyer N, Cao Y, Chen Q, Dunn R, Kassim A, Lieberman D, Moment AJ, Sheen F, Zacuto MJ. Org. Process Res. Dev. 2015; 19: 1760
  • 42 For a recent review, see: Zhang Y, Farrants H, Li X. Chem. Asian J. 2014; 9: 1752
  • 43 Liu Z, Shultz CS, Sherwood CA, Krska S, Dormer PG, Desmond R, Lee C, Sherer EC, Sherer EC, Shpungin J, Cuff J, Xu F. Tetrahedron Lett. 2011; 52: 1685
  • 44 Seashore-Ludlow B, Villo P, Häcker C, Somfai P. Org. Lett. 2010; 12: 5274
  • 45 Seashore-Ludlow B, Villo P, Somfai P. Chem. Eur. J. 2012; 18: 7219
  • 46 Seashore-Ludlow B, Saint-Dizier F, Somfai P. Org. Lett. 2012; 14: 6334
  • 47 Perez M, Echeverria PG, Martinez-Arripe E, Ez Zoubir M, Touati R, Zhang Z, Genêt JP, Phansavath P, Ayad T, Ratovelomanana-Vidal V. Eur. J. Org. Chem. 2015; 5949
  • 48 Echeverria PG, Cornil J, Férard C, Guérinot A, Cossy J, Phansavath P, Ratovelomanana-Vidal V. RSC Adv. 2015; 5: 56815
  • 49 Bai J, Miao S, Wu Y, Zhang Y. Chin. J. Chem. 2011; 29: 2476
  • 50 Fang Z, Wills M. J. Org. Chem. 2013; 78: 8594
  • 51 Echeverria P.-G, Férard C, Phansavath P, Ratovelomanana-Vidal V. Catal. Commun. 2015; 62: 95
  • 52 Monnereau L, Cartigny D, Scalone M, Ayad T, Ratovelomanana-Vidal V. Chem. Eur. J. 2015; 21: 11799
  • 53 Rast S, Modec B, Stephan M, Mohar B. Org. Biomol. Chem. 2016; 14: 2112
  • 54 Son S.-M, Lee H.-K. J. Org. Chem. 2013; 78: 8396
  • 55 Kumaraswamy G, Narayanarao V, Shanigaram P. Tetrahedron 2015; 7: 8960
  • 56 Kumaraswamy G, Narayana Murthy A, Narayanarao V, Vemulapalli SP. B, Bharatam J. Org. Biomol. Chem. 2013; 11: 6751
  • 57 Son S.-M, Lee H.-K. J. Org. Chem. 2014; 79: 2666
  • 58 Geng Z, Wu Y, Miao S, Shen Z, Zhang Y. Tetrahedron Lett. 2011; 52: 907
  • 59 Bisset AA, Dishington A, Jones T, Clarkson GJ, Wills M. Tetrahedron 2014; 70: 7207
  • 60 Steward KM, Gentry EC, Johnson JS. J. Am. Chem. Soc. 2012; 134: 7329; corrigendum: J. Am. Chem. Soc. 2015, 137, 3715
  • 61 Steward KM, Corbett MT, Goodman CG, Johnson JS. J. Am. Chem. Soc. 2012; 134: 20197; corrigendum: J. Am. Chem. Soc. 2015, 137, 3991
  • 62 Goodman CG, Do DT, Johnson JS. Org. Lett. 2013; 15: 2446
  • 63 Villacrez M, Somfai P. Tetrahedron Lett. 2013; 54: 5266
  • 64 Corbett MT, Johnson JS. J. Am. Chem. Soc. 2013; 135: 594
  • 65 Bromhead LJ, Visser J, McErlean CS. P. J. Org. Chem. 2014; 79: 1516
  • 66 Chen T, Ye Q, Zhao Q, Liu G. Org. Lett. 2015; 17: 4972
  • 67 Foubelo F, Yus M. Chem. Rec. 2015; 15: 907
  • 68 Ros A, Magriz A, Dietrich H, Ford M, Fernández R, Lassaletta JM. Adv. Synth. Catal. 2005; 347: 1917
  • 69 Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 4916
  • 70 Kang S, Han J, Lee ES, Choi EB, Lee HK. Org. Lett. 2010; 12: 4184
  • 71 Han J, Kang S, Lee HK. Chem. Commun. 2011; 47: 4004
  • 72 Lee H, Kang S, Choi EB. J. Org. Chem. 2012; 77: 5454
  • 73 Kim JA, Seo YJ, Kang S, Han J, Lee HK. Chem. Commun. 2014; 50: 13706

    • For the influence of the HCO2H/Et3N ratio, see:
    • 74a Miyagi M, Takehara J, Collet S, Okano K. Org. Process Res. Dev. 2000; 4: 346
    • 74b Zhang J, Blazecka PG, Bruendl MM, Huang Y. J. Org. Chem. 2009; 74: 1411
    • 74c Zhou X, Wu X, Yang B, Xiao J. J. Mol. Catal. A: Chem. 2012; 357: 133
  • 75 Seo YJ, Kim JA, Lee HK. J. Org. Chem. 2015; 80: 8887