Synlett 2016; 27(09): 1387-1390
DOI: 10.1055/s-0035-1561575
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Synthesis of 2-Arylbenzothiazoles in an Air/DMSO Oxidant System

Renhe Hu
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Xiaotong Li
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Yao Tong
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Dazhuang Miao
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Qiang Pan
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Zengqiang Jiang
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Haifeng Gan
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
,
Shiqing Han*
a   College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
b   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 04 November 2015

Accepted after revision: 23 January 2016

Publication Date:
25 February 2016 (online)


Abstract

A straightforward strategy for the synthesis of 2-arylbenzothiazoles from 2-aminothiophenol and aryl aldehydes in air/DMSO oxidant system has been developed. This reaction is operationally simple, proceeds without catalysts, tolerates a wide range of functionalities, and provides desired products in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MF, Westwell AD. J. Med. Chem. 2006; 49: 179
    • 1b Bénéteau V, Besson T, Guillard J, Léonce S, Pfeiffer B. Eur. J. Med. Chem. 1999; 34: 105
    • 1c Chakraborty M, Jin KJ, Brewer SC, Peng H.-L, Platz MS, Novak M. Org. Lett. 2009; 11: 4862
    • 1d Le Bozec L, Moody CJ. Aust. J. Chem. 2009; 62: 639
  • 2 Bondock S, Fadaly W, Metwally MA. Eur. J. Med. Chem. 2010; 45: 3692
  • 3 Gupta A, Rawat S. J. Chem. Pharm. Res. 2010; 2: 244
  • 4 Rana A, Siddiqui N, Khan SA, Haque SE, Bhat MA. Eur. J. Med. Chem. 2008; 43: 1114
    • 5a Sun Y, Jiang H, Wu W. Org. Lett. 2013; 15: 1598
    • 5b Rezazadeh S, Akhlaghinia B, Razavi N. Aust. J. Chem. 2015; 68: 145
    • 5c Luan Y, Zheng N, Qi Y. Eur. J. Inorg. Chem. 2014; 26: 4268
    • 5d Paul S, Nanda P, Gupta R. Molecules 2003; 8: 374
    • 5e Sakamoto T, Mori K, Akiyama T. Org. Lett. 2012; 14: 3312
    • 6a Riadi Y, Mamouni R, Azzalou R, Haddad ME, Routier S, Guillaumet G, Lazar S. Tetrahedron Lett. 2011; 52: 3492
    • 6b Dhakshinamoorthy A, Kanagaraj K, Pitchumani K. Tetrahedron Lett. 2011; 52: 69
    • 6c Banerjee S, Payra S, Saha A. Tetrahedron Lett. 2014; 55: 5515
    • 6d Shelkar R, Sarode S, Nagarkar J. Tetrahedron Lett. 2013; 54: 6986
    • 6e Khalafi-Nezhad A, Panahi F, Yousefi R. J. Iran Chem. Soc. 2014; 11: 1311
    • 6f Das S, Samanta S, Maji SK. Tetrahedron Lett. 2013; 54: 1090
    • 6g Shelkar R, Sarode S, Nagarkar J. Tetrahedron Lett. 2013; 54: 6986
    • 7a Ghashang M. Res. Chem. Intermed. 2014; 40: 1669
    • 7b Yang Z, Chen X, Wang S. J. Org. Chem. 2012; 77: 7086
    • 7c Sung G, Lee I, Bo RK. Tetrahedron 2013; 69: 3530
    • 7d Bahrami K, Khodaei MM, Naali F. J. Org. Chem. 2008; 73: 6835
    • 8a Soroko I, Bhole Y, Livingston AG. Green Chem. 2011; 13: 162
    • 8b Tromov BA. Sulfur Rep. 1992; 74: 207
    • 9a Zhou C, Larock RC. J. Org. Chem. 2006; 37: 3184
    • 9b Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva Júnior EM, Braga AL. J. Org. Chem. 2015; 80: 2120
    • 9c Reddy MR, Rao NN, Ramakrishna K. Tetrahedron Lett. 2014; 55: 4758
    • 10a Wu W, Jiang H. Acc. Chem. Res. 2012; 45: 1736
    • 10b Vedernikov AN. Acc. Chem. Res. 2012; 45: 803
    • 10c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 10d Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 10e Stahl SS. Science 2005; 309: 1824
    • 10f Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
  • 11 Naeimi H, Tarazian R. J. Heterocycl. Chem. 2014; 51: 566
    • 12a Chusov D, List B. Angew. Chem. Int. Ed. 2014; 53: 5199
    • 12b Kumará Verma P. Green Chem. 2013; 15: 1687
  • 13 Shi X, Guo J, Liu J, Ye M, Xu Q. Chem. Eur. J. 2015; 21: 9988
  • 14 Typical Procedure 2-Aminothiophenol (1a, 0.5 mmol, 1.0 equiv) and benzaldehyde (2a, 0.6 mmol, 1.2 equiv) were dissolved in DMSO (3 mL). Then, the reaction mixture was stirred at 60 °C for 6 h. After the reaction, H2O was added to the mixture. The mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were then washed with sat. aq NaCl (30 mL). The solution was dried with anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude residue was purified with silica gel chromatography (EtOAc–PE, 1:30) to give pure compound 3a in 96% yield. Selected Spectral Data for 2-Phenylbenzothiazole (3a) 1H NMR (300 MHz, CDCl3): δ = 8.07–8.12 (m, 3 H), 7.91 (d, J = 9.0 Hz, 1 H), 7.48–7.51 (m, 4 H), 7.39 (t, J = 9.0 Hz, 1 H).