Synthesis 2016; 48(17): 2705-2720
DOI: 10.1055/s-0035-1561469
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Fluvirucins and Their Aglycons, the Fluvirucinins

Mercedes Amat*
Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain   Email: [email protected]   Email: [email protected]
,
Núria Llor
Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain   Email: [email protected]   Email: [email protected]
,
Guillaume Guignard
Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain   Email: [email protected]   Email: [email protected]
,
Joan Bosch*
Laboratory of Organic Chemistry, Faculty of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 21 April 2016

Accepted after revision: 29 April 2016

Publication Date:
23 June 2016 (online)


Abstract

Fluvirucins are bioactive macrolactam glycosides isolated from actinomycetes. This review gives an overview of this family of natural products, covering isolation, biological activities, biosynthesis, and total synthesis. The synthesis of fluvirucins and their aglycons, the fluvirucinins, is presented, paying special attention to the synthetic strategy and stereochemical aspects.

1 Introduction

2 Isolation, Biological Activity, and Biosynthesis

3 Synthetic Approaches

3.1 Closure of the 14-Membered Ring by Ring-Closing Metathesis

3.2 Closure of the 14-Membered Ring by Macrolactamization

3.3 Construction of the 14-Membered Ring by Aza-Claisen Ring Expansion

4 Conclusion

 
  • References

  • 1 Hegde VR, Patel MG, Gullo VP, Ganguly AK, Sarre O, Puar MS, McPhail AT. J. Am. Chem. Soc. 1990; 112: 6403
    • 2a Hegde VR, Patel MG, Gullo VP, Puar MS. J. Chem. Soc., Chem. Commun. 1991; 810
    • 2b Hegde V, Patel M, Horan A, Gullo V, Marquez J, Gunnarsson I, Gentile F, Loebenberg D, King A, Puar M, Pramanik B. J. Antibiot. 1992; 45: 624
    • 2c Cooper R, Truumees I, Yarborough R, Loebenberg D, Marquez J, Horan A, Patel M, Gullo V, Puar M, Pramanik B. J. Antibiot. 1992; 45: 633

      A macrolactam disaccharide (Sch 42729; α-d-Glcp-(1→2)-α-l-mycosamine)3a and a macrolactam trisaccharide (Sch 42282; β-d-Glcp-(1→4)-α-d-Glcp-(1→2)-α-l-mycosamine)3b bearing the same aglycon as Sch 38518 were also isolated:
    • 3a Hegde VR, Patel MG, Gullo VP, Horan AC, King AH, Gentile F, Wagman GH, Puar MS, Loebenberg D. J. Antibiot. 1993; 46: 1109
    • 3b Hegde VR, Patel MG, Horan AC, King AH, Gentile F, Puar MS, Loebenberg D. J. Antibiot. 1998; 51: 464
    • 4a Naruse N, Tenmyo O, Kawano K, Tomita K, Ohgusa N, Miyaki T, Konishi M, Oki T. J. Antibiot. 1991; 44: 733
    • 4b Naruse N, Tsuno T, Sawqada Y, Konishi M, Oki T. J. Antibiot. 1991; 44: 741
    • 4c Naruse N, Konishi M, Oki T, Inouye Y, Kakisawa H. J. Antibiot. 1991; 44: 756
  • 5 Ui H, Imoto M, Umezawa K. J. Antibiot. 1995; 48: 387
  • 6 Ayers S, Zink DL, Powell JS, Brown CM, Grund A, Genilloud O, Salazar O, Thompson D, Singh SB. J. Antibiot. 2008; 61: 59
  • 7 Ayers S, Zink DL, Mohn K, Powell JS, Brown CM, Murphy T, Grund A, Genilloud O, Salazar O, Thompson D, Singh SB. J. Nat. Prod. 2007; 70: 1371
  • 8 Puar MS, Gullo V, Gunnarsson I, Hegde V, Patel M, Schwartz J. Bioorg. Med. Chem. Lett. 1992; 2: 575
  • 9 Lin T.-Y, Borketey LS, Prasad G, Waters SA, Schnarr NA. ACS Synth. Biol. 2013; 2: 635
  • 10 Houri AF, Xu Z, Cogan DA, Hoveyda AH. J. Am. Chem. Soc. 1995; 117: 2943
  • 11 Xu Z, Johannes CW, Houri AF, La DS, Cogan DA, Hofilena GE, Hoveyda AH. J. Am. Chem. Soc. 1997; 119: 10302
  • 12 Xu Z, Johannes CW, Salman SS, Hoveyda AH. J. Am. Chem. Soc. 1996; 118: 10926
  • 13 Xu Z, Johannes CW, La DS, Hofilena GE, Hoveyda AH. Tetrahedron 1997; 53: 16377
  • 14 Baltrusch AW, Bracher F. Synlett 2002; 1724
    • 15a Vandewalle M, Van der Eycken J, Oppolzer W, Vullioud C. Tetrahedron 1986; 42: 4035
    • 15b Thom C, Kocieński P. Synthesis 1992; 582
  • 16 Honda M, Katsuki T, Yamaguchi M. Tetrahedron Lett. 1984; 25: 3857
  • 17 Radha Krishna P, Anitha K. Tetrahedron Lett. 2011; 52: 4546
    • 18a Mendlik MT, Cottard M, Rein T, Helquist P. Tetrahedron Lett. 1997; 38: 6375
    • 18b Fürstner A, Bouchez LC, Funel J.-A, Liepins V, Porée F.-H, Gilmour R, Beaufils F, Laurich D, Tamiya M. Angew. Chem. Int. Ed. 2007; 46: 9265
  • 19 Liang B, Negishi E. Org. Lett. 2008; 10: 193
  • 20 Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
  • 21 Llàcer E, Urpí F, Vilarrasa J. Org. Lett. 2009; 11: 3198
  • 22 Evans DA, Rieger DL, Jones TK, Kaldor SW. J. Org. Chem. 1990; 55: 6260
  • 23 Guignard G, Llor N, Molins E, Bosch J, Amat M. Org. Lett. 2016; 18: 1788
  • 24 Guignard G, Llor N, Bosch J, Amat M. Eur. J. Org. Chem. 2016; 693
  • 25 Trost BM, Ceschi MA, König B. Angew. Chem., Int. Ed. Engl. 1997; 36: 1486
  • 26 Martín M, Mas G, Urpí F, Vilarrasa J. Angew. Chem. Int. Ed. 1999; 38: 3086
  • 27 Suh Y.-G, Kim S.-A, Jung J.-K, Shin D.-Y, Min K.-H, Koo B.-A, Kim H.-S. Angew. Chem. Int. Ed. 1999; 38: 3545
  • 28 Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
  • 29 Lee Y.-S, Jung J.-W, Kim S.-H, Jung J.-K, Paek S.-M, Kim N.-J, Chang D.-J, Lee J, Suh Y.-G. Org. Lett. 2010; 12: 2040
  • 30 Suh Y.-G, Lee Y.-S, Kim S.-H, Jung J.-K, Yun H, Jang J, Kim N.-J, Jung J.-W. Org. Biomol. Chem. 2012; 10: 561