Synthesis 2016; 48(16): 2540-2552
DOI: 10.1055/s-0035-1561462
short review
© Georg Thieme Verlag Stuttgart · New York

Stannylation Reactions under Base Metal Catalysis: Some Recent Advances

Hiroto Yoshida*
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 18 April 2016

Accepted: 21 April 2016

Publication Date:
07 June 2016 (online)


Abstract

Because of the high synthetic significance of organostannanes, much attention has been focused on the development of stannylation reactions endowed with high chemo-, regio-, and stereoselectivities. This review highlights recent advances in catalytic C–Sn bond-forming reactions especially with base metal complexes, intended to attract the readers’ attention to the unique base metal catalysis in the stannylation, thereby encouraging future progress in this field.

1 Introduction

2 Co Catalysis

3 Ni Catalysis

4 Cu Catalysis

5 Zn Catalysis

6 Mo Catalysis

7 W Catalysis

8 Conclusion

 
  • References

    • 2a Farina V, Krishnamurthy V, Scott WJ. Org. React. 1997; 50: 1
    • 2b Mitchell TN. Organotin Reagents in Cross-Coupling Reactions . In Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 125-161
    • 2c Martin-Matute B, Szabo KJ, Mitchell TN. Organotin Reagents in Cross-Coupling Reactions . In Metal Catalyzed Cross-Coupling and More . de Meijere A, Brase S, Oestreich M. Wiley; New York: 2014: 423-474
    • 2d Cordovilla C, Bartolomé C, Martímez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 3 Williams DR, Nag PP. Reactions of SE′ Substitution for Organostannanes in Organic Synthesis . In Tin Chemistry: Fundamentals, Frontiers, and Applications . Gielen M, Davies A, Pannell K, Tiekink E. John Wiley & Sons; Chichester: 2008: 515-560
  • 4 Rim C, Son DY. ARKIVOC 2006; (ix): 265
    • 5a Lam PY. S, Vincent G, Bonne V, Clark CG. Tetrahedron Lett. 2002; 43: 3091
    • 5b Vakalopoulos A, Kavazoudi X, Schoof J. Tetrahedron Lett. 2006; 47: 8607
    • 5c Huang C, Liang T, Harada S, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 13308
    • 6a Furuya T, Strom AE, Ritter T. J. Am. Chem. Soc. 2009; 131: 1662
    • 6b Tang P, Furuya T, Ritter T. J. Am. Chem. Soc. 2010; 132: 12150
    • 6c Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Angew. Chem. Int. Ed. 2010; 49: 6821
    • 6d Ye Y, Sanford MS. J. Am. Chem. Soc. 2013; 135: 4648
  • 7 Le Grognec E, Chrétien J.-M, Zammattio F, Quintard J.-P. Chem. Rev. 2015; 115: 10207
  • 8 Young D. Green Organotin Chemistry: an Oxymoron? . In Tin Chemistry: Fundamentals, Frontiers, and Applications . Gielen M, Davies A, Pannell K, Tiekink E. John Wiley & Sons; Chichester: 2008: 653-665
    • 9a Seinen W, Vos JG, Van Spanje I, Snoek M, Brands R, Hooykaas H. Toxicol. Appl. Pharmacol. 1977; 42: 197
    • 9b Snoeij NJ, Van Iersel AA. J, Penninks AH, Seinen W. Toxicol. Appl. Pharmacol. 1985; 81: 274
    • 9c Cooney JJ, Wuertz S. J. Ind. Microbiol. 1989; 4: 375
    • 10a Barbero A, Pulido FJ. Chem. Soc. Rev. 2005; 34: 913
    • 10b Pulido FJ, Barbero A. Silyl and Stannyl Derivatives of Organocopper Compounds . In The Chemistry of Organocopper Compounds . Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2009: 775-856
    • 11a Nakamura E, Machii D, Inubushi T. J. Am. Chem. Soc. 1989; 111: 6849
    • 11b Nakamura E, Imanishi Y, Machii D. J. Org. Chem. 1994; 59: 8178
    • 11c Miura K, Wang D, Matsumoto Y, Fujisawa N, Hosomi A. J. Org. Chem. 2003; 68: 8730
    • 11d Miura K, Wang D, Matsumoto Y, Hosomi A. Org. Lett. 2005; 7: 503
    • 11e Oderinde MS, Froese RD. J, Organ MG. Angew. Chem. Int. Ed. 2013; 52: 11334
    • 11f Qiu D, Meng H, Jin L, Wang S, Tang S, Wang X, Mo F, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2013; 52: 11581
    • 12a Yoshida H, Terayama T, Ohshita J, Kunai A. Chem. Commun. 2004; 1980
    • 12b Yoshida H, Yoshida R, Takaki K. Angew. Chem. Int. Ed. 2013; 52: 8629
    • 12c Li Y, Chakrabarty S, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2016; 55: 802
    • 13a Smith ND, Mancuso J, Lautens M. Chem. Rev. 2000; 100: 3257
    • 13b Trost BM, Ball ZT. Synthesis 2005; 853
    • 14a Beletskaya I, Moberg C. Chem. Rev. 1999; 99: 3435
    • 14b Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
    • 16a Azarian D, Dua SS, Eaborn C, Walton DR. M. J. Organomet. Chem. 1976; 117: C55
    • 16b Azizian H, Eaborn C, Pidcock A. J. Organomet. Chem. 1981; 215: 49
    • 16c Kosugi M, Ohya T, Migita T. Bull. Chem. Soc. Jpn. 1983; 56: 3855
    • 16d Pickett JE, Váradi A, Palmer TC, Grinnell SG, Schrock JM, Pasternak GW, Karimov RR, Majumdar S. Bioorg. Med. Chem. Lett. 2015; 25: 1761
  • 17 Nozaki K, Wakamatsu K, Nonaka T, Tückmantel W, Oshima K, Utimoto K. Tetrahedron Lett. 1986; 27: 2007
  • 18 Kikukawa K, Umekawa H, Wada F, Matsuda T. Chem. Lett. 1988; 881
    • 19a Ghosh B, Maleczka RE. Jr. Tetrahedron Lett. 2011; 52: 5285 ; corrigendum: Tetrahedron Lett. 2013, 54, 3219
    • 19b Maleczka RE. Jr, Ghosh B, Gallagher WP, Baker AJ, Muchnij JA, Szymanski AL. Tetrahedron 2013; 69: 4000
  • 20 Gosmini C, Périchon J. Org. Biomol. Chem. 2005; 3: 216
    • 21a Shirakawa E, Yoshida H, Kurahashi T, Nakao Y, Hiyama T. J. Am. Chem. Soc. 1998; 120: 2975
    • 21b Shirakawa E, Yoshida H, Nakao Y, Hiyama T. J. Am. Chem. Soc. 1999; 121: 4290
    • 21c Shirakawa E, Yoshida H, Nakao Y, Hiyama T. Org. Lett. 2000; 2: 2209
    • 21d Yoshida H, Shirakawa E, Kurahashi T, Nakao Y, Hiyama T. Organometallics 2000; 19: 5671
    • 21e Yoshida H, Shirakawa E, Nakao Y, Honda Y, Hiyama T. Bull. Chem. Soc. Jpn. 2001; 74: 637
    • 21f Yoshida H, Honda Y, Shirakawa E, Hiyama T. Chem. Commun. 2001; 1880
  • 22 Shirakawa E, Yamasaki K, Yoshida H, Hiyama T. J. Am. Chem. Soc. 1999; 121: 10221
  • 23 Shirakawa E, Yamamoto Y, Nakao Y, Tsuchimoto T, Hiyama T. Chem. Commun. 2001; 1926
  • 24 Shirakawa E, Nakao Y, Yoshida H, Hiyama T. J. Am. Chem. Soc. 2000; 122: 9030
    • 25a Shirakawa E, Nakao Y, Hiyama T. Chem. Commun. 2001; 263
    • 25b Nakao Y, Shirakawa E, Tsuchimoto T, Hiyama T. J. Organomet. Chem. 2004; 689: 3701
  • 26 Shirakawa E, Nakao Y, Tsuchimoto T, Hiyama T. Chem. Commun. 2002; 1962
  • 27 Shirakawa E, Yamamoto Y, Nakao Y, Oda S, Tsuchimoto T, Hiyama T. Angew. Chem. Int. Ed. 2004; 43: 3448
    • 28a Sato Y, Saito N, Mori M. Chem. Lett. 2002; 18
    • 28b Saito N, Mori M, Sato Y. J. Organomet. Chem. 2007; 692: 460
    • 29a Doster ME, Hatnean JA, Jeftic T, Modi S, Johnson SA. J. Am. Chem. Soc. 2010; 132: 11923
    • 29b Johnson SA, Doster ME, Matthews J, Shoshani M, Thibodeau M, Labadie A, Hatnean JA. Dalton Trans. 2012; 41: 8135
    • 29c Doster ME, Johnson SA. Organometallics 2013; 32: 4174
  • 30 Komeyama K, Asakura R, Takaki T. Org. Biomol. Chem. 2015; 13: 8713
    • 31a Hibino J, Matsubara S, Morizawa Y, Oshima K, Nozaki H. Tetrahedron Lett. 1984; 25: 2151
    • 31b Matsubara S, Hibino J, Morizawa Y, Oshima K, Nozaki H. J. Organomet. Chem. 1985; 285: 163
    • 31c Nonaka T, Okuda Y, Matsubara S, Oshima K, Utimoto K, Nozaki H. J. Org. Chem. 1986; 51: 4716
    • 32a Sharma S, Oehlschlager AC. Tetrahedron Lett. 1986; 27: 6161
    • 32b Sharma S, Oehlschlager AC. Tetrahedron Lett. 1988; 29: 261
    • 32c Sharma S, Oehlschlager AC. J. Org. Chem. 1989; 54: 5064
  • 33 Schmidtmann ES, Oestreich M. Angew. Chem. Int. Ed. 2009; 48: 4634
    • 34a Leung LT, Leung SK, Chiu P. Org. Lett. 2005; 7: 5249
    • 34b Leung LT, Chiu P. Pure Appl. Chem. 2006; 78: 281
    • 34c Miao R, Li S, Chiu P. Tetrahedron 2007; 63: 6737
  • 35 Takemoto Y, Yoshida H, Takaki K. Chem. Eur. J. 2012; 18: 14841
  • 36 Takemoto Y, Yoshida H, Takaki K. Synthesis 2014; 46: 3024
  • 37 Jia T, Cao P, Wang D, Lou Y, Liao J. Chem. Eur. J. 2015; 21: 4918
  • 38 Yoshida H, Takemoto Y, Takaki K. Chem. Commun. 2015; 51: 6297
  • 39 Yoshida H, Hayashi Y, Ito Y, Takaki K. Chem. Commun. 2015; 51: 9440
    • 40a Chenard BL, Laganis ED, Davidson F, RajanBabu TV. J. Org. Chem. 1985; 50: 3666
    • 40b Mitchell TN, Killing H, Dicke R, Wickenkamp R. J. Chem. Soc., Chem. Commun. 1985; 354
    • 40c Mitchell TN, Schneider U. J. Organomet. Chem. 1991; 407: 319
  • 41 Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2013; 52: 11620
  • 42 Yoshida H, Shinke A, Takaki K. Chem. Commun. 2013; 49: 11671
  • 43 Yoshida H, Shinke A, Kawano Y, Takaki K. Chem. Commun. 2015; 51: 10616
  • 44 Kiyokawa K, Tachikake N, Yasuda M, Baba A. Angew. Chem. Int. Ed. 2011; 50: 10393
  • 45 Zhang HX, Guibé F, Balavoine G. J. Org. Chem. 1990; 55: 1857
    • 46a Kazmaier U, Schauss D, Pohlman M. Org. Lett. 1999; 1: 1017
    • 46b Kazmaier U, Pohlman M, Schauss D. Eur. J. Org. Chem. 2000; 2761
    • 46c Kazmaier U, Schauss D, Pohlman M, Raddatz S. Synthesis 2000; 914
    • 46d Kazmaier U, Schauss D, Raddatz S, Pohlman M. Chem. Eur. J. 2001; 7: 456
    • 46e Braune S, Kazmaier U. J. Organomet. Chem. 2002; 641: 26
    • 46f Braune S, Pohlman M, Kazmaier U. J. Org. Chem. 2004; 69: 468
    • 46g Kazmaier U, Dörrenbächer S, Wesquet A, Lucas S, Kummeter M. Synthesis 2007; 320
    • 46h Lin H, Kazmaier U. Eur. J. Org. Chem. 2009; 1221
    • 46i Lin H, Kazmaier U. Eur. J. Org. Chem. 2007; 2839
    • 46j Dörrenbächer S, Kazmaier U, Ruf S. Synlett 2006; 547
    • 46k Kazmaier U, Wesquet A. Synlett 2005; 1271
    • 46l Wesquet AO, Dörrenbächer S, Kazmaier U. Synlett 2006; 1105
    • 46m Jena N, Kazmaier U. Eur. J. Org. Chem. 2008; 3852
    • 46n Maity P, Klos MR, Kazmaier U. Org. Lett. 2013; 15: 6246
  • 47 Braune S, Kazmaier U. Angew. Chem. Int. Ed. 2003; 42: 306
  • 48 Wesquet AO, Kazmaier U. Adv. Synth. Catal. 2009; 351: 1395