Synthesis 2016; 48(14): 2165-2177
DOI: 10.1055/s-0035-1561444
short review
© Georg Thieme Verlag Stuttgart · New York

C–H Bond Formation with Boronic Acids and Derivatives by Transition-Metal-Free Conjugate Addition Reactions

Francisco Sánchez-Sancho
a  Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, 28040 Madrid, Spain   Email: [email protected]
b  Instituto de Química Médica, CSIC, c/ Juan de la Cierva 3, 28806 Madrid, Spain
,
Aurelio G. Csákÿ*
a  Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, 28040 Madrid, Spain   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 23 March 2016

Accepted: 02 April 2016

Publication Date:
19 May 2016 (online)


Abstract

Initially popularized by the Suzuki–Miyaura reaction, boronic acids, boronate esters, and trifluoroborates constitute nowadays essential reagents in C–C bond-forming processes. The classic transformations mediated by these reagents require the use of transition metals as catalysts. However, in recent times new reactions in which aryl, alkenyl, and alkynyl derivatives behave as nucleophiles in the absence of transition-metal catalysis have begun to emerge. The purpose of this review is to highlight the most relevant recent advances in C–C bond making reactions by conjugate addition of these types of boronic acids under transition-metal-free conditions.

1 Introduction

2 Nucleophilicity of Boronic Acid Derivatives

3 Direct Conjugate Addition Reactions

4 Activation with BF3, Cyanuric Fluoride, or TFAA

5 Activation with BINOL Derivatives

6 Activation with Tartaric Acid and Tartaric Acid Derivatives

7 Conclusions

 
  • References

  • 1 Hall DG In Boronic Acids . Vol. 1. Hall DG. Wiley-VCH; Weinheim: 2011: 1
    • 2a O’Donovan MR, Mee CD, Fenner S, Teasdale A, Phillips DH. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2011; 724: 1
    • 2b Hansen MM, Jolly RA, Linder RJ. Org. Process Res. Dev. 2015; 19: 1507
  • 3 Jiménez-Aliaga K, Bermejo-Bescós P, Martín-Aragón S, Csákÿ AG. Bioorg. Med. Chem. Lett. 2013; 23: 426
  • 4 Petasis NA, Akritopoulou I. Tetrahedron Lett. 1993; 34: 583

    • For reviews of the Petasis reaction, see:
    • 5a Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
    • 5b Ramadhar TR, Batey RA In Boronic Acids . Vol. 2. Hall DG. Wiley-VCH; Weinheim: 2011: 427
    • 5c Pyne SG, Davis AS, Ritthiwigrom T, Au CW. G, Savaspun K, Wotherspoon M. Pure Appl. Chem. 2013; 85: 1215
    • 5d Pyne SG, Minyan T. Org. React. 2014; 83: 211
  • 6 For a previous review on the transition-metal-free ipso-functionalization of arylboronic acids and their derivatives, see: Zhu C, Flack JR. Adv. Synth. Catal. 2014; 356: 2395
  • 7 For a previous review on C–C bond-forming reactions, see: Roscales S, Csákÿ AG. Chem. Soc. Rev. 2014; 43: 8215
    • 8a Mayr H, Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
    • 8b Berionni G, Maji B, Knochel P, Mayr H. Chem. Sci. 2012; 3: 878
    • 8c Berionni G, Leonov AI, Mayer P, Ofial AR, Mayr H. Angew. Chem. Int. Ed. 2015; 54: 2780
  • 9 Berionni G, Morozova M, Heininger M, Mayer P, Knochel P, Mayr H. J. Am. Chem. Soc. 2013; 135: 6317
  • 10 Ahn S.-J, Lee C.-Y, Kim N.-K, Cheon C.-H. J. Org. Chem. 2014; 79: 7277
  • 11 Lee S, MacMillan DW. C. J. Am. Chem. Soc. 2007; 129: 19965
  • 12 Reiter M, Torsell S, Lee S, MacMillan DW. C. Chem. Sci. 2010; 1: 37
    • 13a Kim S.-G. Tetrahedron Lett. 2008; 49: 6148
    • 13b Inokuma T, Takasu K, Sakaeda T, Takemoto Y. Org. Lett. 2009; 11: 2425
    • 13c Akagawa S, Sugiyama M, Kudo K. Org. Biomol. Chem. 2012; 10: 4839
  • 14 Bos M, Riguet E. J. Org. Chem. 2014; 79: 10081
    • 15a Choi K.-S, Kim S.-G. Synthesis 2010; 3339
    • 15b Choi K.-S, Kim S.-G. Tetrahedron Lett. 2010; 51: 5203
  • 16 Ackrill TD, Sparkes HA, Willis CL. Org. Lett. 2015; 17: 3884
    • 17a Gewali MB, Tezuka Y, Banskota AH, Ali MS, Saiki I, Dong H, Kadota S. Org. Lett. 1999; 1: 1733
    • 17b Ali MS, Banskota AH, Tezuka Y, Saiki I, Kadota S. Biol. Pharm. Bull. 2001; 24: 525
  • 18 Ilangovan A, Polu A, Satish G. Org. Chem. Front. 2015; 2: 1616
    • 19a Hara S, Hyuga S, Aoyama M, Sato M, Suzuki A. Tetrahedron Lett. 1990; 31: 247
    • 19b Takada E, Hara S, Suzuki A. Tetrahedron Lett. 1993; 34: 7067
    • 19c Hara S, Kayo N, Takada E, Suzuki A. Synlett 1994; 961
    • 19d Hara S, Ishimura S, Suzuki A. Synlett 1996; 993
    • 19e Hara S, Shudoh H, Ishimura S, Suzuki A. Bull. Chem. Soc. Jpn. 1998; 71: 2403
    • 20a Fujishima H, Takada E, Hara S, Suzuki A. Chem. Lett. 1992; 695
    • 20b Brown CD, Chong JM, Shen L. Tetrahedron 1999; 55: 14233
    • 20c Bertolini F, Woodward S. Synlett 2009; 51
  • 21 Roscales S, Rincón A, Buxaderas E, Csákÿ AG. Tetrahedron Lett. 2012; 53: 4721
    • 22a Roscales S, Csáky AG. Org. Lett. 2012; 14: 1187
    • 22b Roscales S, Ortega V, Csákÿ AG. J. Org. Chem. 2013; 78: 1825
    • 23a Pellegrinet S, Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
    • 23b Paton RS, Goodman JM, Pellegrinet S. J. Org. Chem. 2008; 73: 5078
  • 24 Nguyen TS, Yang MS, May JA. Tetrahedron Lett. 2015; 56: 3337
    • 25a Chong JM, Shen L, Taylor NJ. J. Am. Chem. Soc. 2000; 122: 1822
    • 25b Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
    • 25c Wu TR, Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
    • 25d Turner HM, Patei J, Niljianskul N, Chong JM. Org. Lett. 2011; 13: 5796
    • 26a Lundy BJ, Jansone-Popova S, May JA. Org. Lett. 2011; 13: 4958
    • 26b Le PQ, Nguyen TS, May JA. Org. Lett. 2012; 14: 6104
    • 27a Indatraline: Davies HM. L, Gregg TM. Tetrahedron Lett. 2002; 43: 4951
    • 27b Tolterodine: Kobayashi K, Nishikata T, Yamamoto Y, Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1019
  • 28 Shih J.-L, Nguyen TS, May JA. Angew. Chem. Int. Ed. 2015; 54: 9931
  • 29 Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-K, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
  • 30 Luan Y, Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
  • 31 Grayson MN, Goodman JM. J. Org. Chem. 2015; 80: 2056
  • 32 Barbato KS, Luan Y, Ramella D, Panek JS, Schaus SE. Org. Lett. 2015; 17: 5812
  • 33 Fisher KM, Bolshan Y. J. Org. Chem. 2015; 80: 12676
  • 34 Sugiura M, Tokudomi M, Nakajima M. Chem. Commun. 2010; 46: 7799
  • 35 Grimblat N, Sugiura M, Pellegrinet SC. J. Org. Chem. 2014; 79: 6754
  • 36 Sugiura M, Kinoshita R, Nakajima M. Org. Lett. 2014; 16: 5172
  • 37 Roscales S, Sancho A, Csákÿ AG. Synthesis 2015; 47: 2233
  • 38 Palframan MJ, Pattenden G. Chem. Commun. 2014; 50: 7223
  • 39 Roscales S, Csákÿ AG. Chem. Commun. 2016; 52: 3018