Synthesis 2016; 48(12): 1803-1813
DOI: 10.1055/s-0035-1561435
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Nororipavine and Noroxymorphone via N- and O-Demethylation of Iron Tricarbonyl Complex of Thebaine

Aleš Machara*
a  Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic   Email: macharaa@natur.cuni.cz
,
Mary Ann A. Endoma-Arias
b  Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada   Email: thudlicky@brocku.ca
,
Ivana Císařova
c  Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, 128 43, Czech Republic
,
D. Phillip Cox
d  Noramco, Inc., 503 Carr Road, Suite 200, Wilmington, DE 19809, USA
,
Tomáš Hudlický*
b  Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada   Email: thudlicky@brocku.ca
› Author Affiliations
Further Information

Publication History

Received: 07.03 2016

Accepted: 29 March 2016

Publication Date:
19 April 2016 (online)


Abstract

Thebaine was converted into its iron tricarbonyl complex, which underwent successive N- and O-demethylation with BrCN and BBr3, respectively. Decomplexation of the iron tricarbonyl moiety was accomplished with ammonium cerium(IV) nitrate (CAN) and base-catalyzed hydrolysis furnished nororipavine. When excess CAN was used the methoxydiene unit was converted into its C-14 nitrate that on hydrogenation and further hydrolysis furnished noroxymorphone. Full experimental and spectral data are provided for all key compounds.

Supporting Information

 
  • References

  • 1 Hudlický T. Can. J. Chem. 2015; 93: 492
    • 2a Bentley KW, Hardy DG. J. Am. Chem. Soc. 1967; 89: 3281
    • 2b Ohmori S, Morimoto Y. CNS Drug Rev. 2002; 8: 391
  • 3 Hosztafi S. Adv. Biosci. Biotechnol. 2014; 5: 704
    • 4a Millgate AG, Pogson BJ, Wilson IW, Kutchan TM, Zenk MH, Gerlach WL, Fist AJ, Larkin PJ. Nature (London) 2004; 431: 413
    • 4b Fist AJ, Byrne CJ, Gerlach WL. US 8067213, 2011
  • 5 21CFR1312.13, called ‘80/20 Rule’.
  • 6 Thavaneswaran S, McCamley K, Scammells PJ. Nat. Prod. Commun. 2006; 1: 885
  • 7 von Braun J. Ber. Dtsch. Chem. Ges. 1900; 33: 1438
    • 8a Cooley JH, Evain JE. Synthesis 1989; 1
    • 8b Abdel-Monem MM, Portoghese PS. J. Med. Chem. 1972; 15: 208
    • 8c Montzka TA, Matiskella JD, Partyka RA. Tetrahedron Lett. 1974; 11: 1325
    • 8d Brine GA, Boldt KG, Hart CK, Carrol FI. Org. Prep. Proced. Int. 1976; 8: 103
    • 8e Rice KC. J. Org. Chem. 1975; 40: 1850
    • 8f Rice KC, May EL. J. Heterocycl. Chem. 1977; 14: 665
    • 9a Smissman EE, Makriyannis A. J. Org. Chem. 1973; 38: 1652
    • 9b Lauterbach EH, Dinkel T, Heller S, Bertogg A. US 20090163717, 2009
    • 10a McCamley K, Ripper JA, Singer RD, Scammells PJ. J. Org. Chem. 2003; 68: 9847
    • 10b Werner L, Wernerova L, Machara A, Endoma-Arias M, Duchek J, Adams DA, Cox PD, Hudlický T. Adv. Synth. Catal. 2012; 354: 2706
    • 10c Nakano Y, Savage GP, Saubem S, Scammells PJ, Polyzos A. Aust. J. Chem. 2013; 66: 178
    • 10d Kok GB, Scammells PJ. Synthesis 2012; 44: 2587
    • 11a Werner L, Machara A, Adams DR, Cox PD, Hudlický T. J. Org. Chem. 2011; 76: 4628
    • 11b Machara A, Cox PD, Hudlický T. Heterocycles 2012; 84: 615
    • 11c Machara A, Werner L, Leisch H, Carroll R, Adams DR, Haque DM, Cox PD, Hudlický T. Synlett 2015; 26: 2101
    • 12a Machara A, Werner L, Endoma-Arias MA, Cox PD, Hudlický T. Adv. Synth. Catal. 2012; 354: 613
    • 12b Machara A, Cox PD, Hudlický T. Adv. Synth. Catal. 2012; 354: 2713
    • 13a Do Pham DD, Kelso GF, Yang Y, Hearn MT. W. Green Chem. 2014; 16: 1399
    • 13b Li Y, Jia F, Li Z. Chem. Eur. J. 2013; 19: 82
    • 13c Li Y, Ma L, Jia F, Li Z. J. Org. Chem. 2013; 78: 5638
    • 13d Endoma-Arias MA. A, Machara A, Cox DP, Hudlický T. Heterocycles 2016; 93 in press; DOI: 10.3987/COM-15-S(T)63
  • 14 Chaudhary V, Leisch H, Moudra A, Allen B, De Luca V, Cox DP, Hudlický T. Collect. Czech. Chem. Commun. 2009; 74: 1179
  • 15 Speyer E, Rosenfeld H. Ber. Dtsch. Chem. Ges. 1925; 58: 1125
  • 16 Tius MA, Kerr MA. J. Am. Chem. Soc. 1992; 114: 5959
    • 17a Allen AC, Copper DA, Moore JM, Teer ChB. J. Org. Chem. 1984; 49: 3462
    • 17b Freund M, Göbel E. Ber. Dtsch. Chem. Ges. 1895; 28: 941
  • 18 Bertgen C, Fleischhacker W, Viebock F. Chem. Ber. 1967; 100: 3002
  • 19 Toth JE, Fuchs PL. J. Org. Chem. 1986; 51: 2594
  • 20 Birch AJ, Fitton H. Aust. J. Chem. 1969; 22: 971
    • 21a Duchek J, Piercy TG, Gilmet J, Hudlický T. Can. J. Chem. 2011; 89: 709
    • 21b Koizumi H, Yokosjima S, Fukuyama T. Chem. Asian J. 2010; 5: 2192
    • 22a Pohland A, Sullivan HR. Jr. GB 1124441, 1968
    • 22b Maat L, Peters JA, Prazeres MA. Recl. Trav. Chim. Pays-Bas 1985; 104: 205
    • 22c Si Y.-G, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. J. Med. Chem. 2008; 51: 983
    • 22d Zhang A, Csutoras C, Neumeyer JL. Org Lett. 2005; 7: 3239
    • 22e Si Y.-G, Choi Y.-K, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. Bioorg. Med. Chem. Lett. 2009; 19: 51
  • 23 Merz H, Pook K.-H. Tetrahedron 1970; 26: 1727
  • 24 Kok GB, Pye CC, Singer RD, Scammells PJ. J. Org. Chem. 2010; 75: 4806
  • 25 Kok GB, Scammells PJ. Org. Biomol. Chem. 2011; 9: 1008
  • 26 Hori M, Kataoka T, Shimizu H, Imai E, Iwamura T, Nozaki M, Niwa M, Fujimura H. Chem. Pharm. Bull. 1984; 32: 1268
  • 27 Lawson JA, Degraw JI. J. Med. Chem. 1977; 20: 165
    • 28a Granchelli FE, Soloway AH, Neumeyer JL, Filer CN. J. Org. Chem. 1977; 42: 2014
    • 28b Granchelli FE, Filer CN, Soloway AH, Neumeyer JL. J. Org. Chem. 1980; 45: 2275
    • 28c Reinart R, Gyulai Z, Berényi S, Antus S, Vonk A, Rinken A, Sipos A. Eur. J. Med. Chem. 2011; 46: 2992
    • 28d Sipos A, Csutorás C, Berényi S, Uustare A, Rinken A. Bioorg. Med. Chem. 2008; 16: 4563
    • 30a Coop A, Lewis JW, Rice KC. J. Org. Chem. 1996; 61: 6774
    • 30b Coop A, Janetky JW, Lewis JW, Rice KC. J. Org. Chem. 1998; 63: 4392
  • 31 Schmid H, Karrer P. Helv. Chim. Acta 1950; 33: 863
  • 32 Sipos A, Berényi S, Antus A. Helv. Chim. Acta 2009; 92: 1359
  • 33 Murphy B, Šnajdr I, Machara A, Endoma-Arias M.-AA, Stamatatos TC, Cox PD, Hudlický T. Adv. Synth. Catal. 2014; 356: 2679
    • 34a Birch AJ, Kelly LF, Liepa AJ. Tetrahedron Lett. 1985; 26: 501
    • 34b Sato Y, Mori M, Shibasaki M. Tetrahedron: Asymmetry 1995; 6: 757
    • 34c Paley RS, Estroff LA, Gauguet J.-M, Hunt DK, Newlin RC. Org. Lett. 2000; 2: 365
  • 35 Pearson JA, Zhang S, Sun H. J. Org. Chem. 2012; 77: 8835
    • 36a Khan MA, Mahon MF, Lowe JP, Stewart AJ. W, Lewis SE. Chem. Eur. J. 2012; 18: 13480
    • 36b Sar A, Lindeman S, Donaldson WA. Org. Biomol. Chem. 2010; 8: 3908
    • 36c Jana ChK, Studer A. Chem. Eur. J. 2008; 14: 6326
    • 37a Bentley KW, Hardy DG, Lewis JW, Readhead MJ, Rushworth WI. J. Chem. Soc. C 1969; 826
    • 37b Lewis JW, Readhead MJ, Smith AC. B. J. Med. Chem. 1973; 16: 9
    • 37c Marton J, Szabó Z, Garadnay S, Miklós S, Makleit S. Tetrahedron 1998; 54: 9143
  • 38 Fleischacker W, Hloch R, Vieböck F. Monatsh. Chem. 1968; 99: 1568
  • 39 Machara A, Arias MA, Císařová I, Cox DP, Hudlický T. Eur. J. Org. Chem. 2016; 1500