Subscribe to RSS
DOI: 10.1055/s-0035-1561293
Catalytically Active Nickel–Nickel Bonds Using Redox-Active Ligands
Publication History
Received: 04 November 2015
Accepted after revision: 23 November 2015
Publication Date:
11 January 2016 (online)
Abstract
Advances in catalytic methodology are limited by the available tools for systematically optimizing catalyst structure. For molecular transition-metal catalysts, this optimization process typically involves two principle parameters: the identity of the active metal center and the environment presented by supporting ligands. In this Account, we highlight our group’s efforts to exploit nuclearity as a parameter in catalyst design. We recently reported a binucleating naphthyridine–diimine (NDI) ligand that supports coordinatively unsaturated nickel–nickel bonds across a broad range of formal oxidation states. Taking advantage of ligand-centered redox activity, these dinickel complexes function as robust platforms for catalytic transformations, including hydrosilylation and alkyne cyclotrimerization reactions. Our results collectively demonstrate that nuclearity effects provide a complementary means of modulating the activity and selectivity of transition metal catalysts.
1 Introduction
2 Group 10 Metal–Metal Bonds in Catalysis
3 Dinuclear Nickel Complexes Supported by Redox-Active Ligands
4 Multielectron Redox Transformations at Metal–Metal Bonds
5 Dinuclear Silane Activation and Catalytic Hydrosilylations
6 Selective Alkyne Cyclotrimerization
7 Conclusions
-
References
- 1a Tard C, Pickett CJ. Chem. Rev. 2009; 109: 2245
- 1b Kung Y, Drennan CL. Curr. Opin. Chem. Biol. 2011; 15: 276
- 1c Evans DJ. Coord. Chem. Rev. 2005; 249: 1582
- 1d Baik M.-H, Newcomb M, Friesner RA, Lippard SJ. Chem. Rev. 2003; 103: 2385
- 1e Himes RA, Karlin KD. Cur. Opin. Chem. Biol. 2009; 13: 119
- 2a Cooper BG, Napoline JW, Thomas CM. Catal. Rev. 2012; 54: 1
- 2b Kornecki KP, Berry JF, Powers DC, Ritter T In Progress in Inorganic Chemistry . Vol. 58. Karlin KD. John Wiley and Sons; Hoboken: 2014: 225-302
- 2c Doyle MP. J. Org. Chem. 2006; 71: 9253
- 2d Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
- 2e Zhou W, Marquard SL, Bezpalko MW, Foxman BM, Thomas CM. Organometallics 2013; 32: 1766
- 2f Mazzacano TJ, Mankad NP. J. Am. Chem. Soc. 2013; 135: 17258
- 2g Siedschlag RB, Bernales V, Vogiatzis KD, Planas N, Clouston LJ, Bill E, Gagliardi L, Lu CC. J. Am. Chem. Soc. 2015; 137: 4638
- 2h Walker WK, Kay BM, Michaelis SA, Anderson DL, Smith SJ, Ess DH, Michaelis DJ. J. Am. Chem. Soc. 2015; 137: 7371
- 3 Zhou Y.-Y, Hartline DR, Steiman TJ, Fanwick PE, Uyeda C. Inorg. Chem. 2014; 53: 11770
- 4 Steiman TJ, Uyeda C. J. Am. Chem. Soc. 2015; 137: 6104
- 5 Pal S, Uyeda C. J. Am. Chem. Soc. 2015; 137: 8042
- 6 Murahashi T, Kurosawa H. Coord. Chem. Rev. 2002; 231: 207
- 7 Vilar R, Mingos DM. P, Cardin CJ. J. Chem. Soc., Dalton Trans. 1996; 4313
- 8 Stambuli JP, Kuwano R, Hartwig JF. Angew. Chem. Int. Ed. 2002; 41: 4746
- 9 Barder TE. J. Am. Chem. Soc. 2005; 128: 898
- 10 Proutiere F, Aufiero M, Schoenebeck F. J. Am. Chem. Soc. 2012; 134: 606
- 11 Hruszkewycz DP, Balcells D, Guard LM, Hazari N, Tilset M. J. Am. Chem. Soc. 2014; 136: 7300
- 12 Bonney KJ, Proutiere F, Schoenebeck F. Chem. Sci. 2013; 4: 4434
- 13 Yin G, Kalvet I, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 6809
- 14 Aufiero M, Sperger T, Tsang AS. K, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 10322
- 15 Velian A, Lin S, Miller AJ. M, Day MW, Agapie T. J. Am. Chem. Soc. 2010; 132: 6296
- 16 Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 11234
- 17a Powers DC, Ritter T. Nat. Chem. 2009; 1: 302
- 17b Dick AR, Kampf JW, Sanford MS. Organometallics 2005; 24: 482
- 18 Powers DC, Ritter T. Acc. Chem. Res. 2011; 45: 840
- 19 Fafard CM, Adhikari D, Foxman BM, Mindiola DJ, Ozerov OV. J. Am. Chem. Soc. 2007; 129: 10318
- 20a Cotton FA, Matusz M, Poli R, Feng X. J. Am. Chem. Soc. 1988; 110: 1144
- 20b Ferrence GM, Simón-Manso E, Breedlove BK, Meeuwenberg L, Kubiak CP. Inorg. Chem. 2004; 43: 1071
- 20c Iluc VM, Laskowski CA, Hillhouse GL. Organometallics 2009; 28: 6135
- 20d Horak KT, Velian A, Day MW, Agapie T. Chem. Commun. 2014; 50: 4427
- 21a Chalk AJ, Harrod JF. J. Am. Chem. Soc. 1965; 87: 16
- 21b Roy AK In Advances in Organometallic Chemistry . Vol. 55. West R, Hill A, Fink MJ. Academic Press; Oxford: 2007: 1-59
- 21c Troegel D, Stohrer J. Coord. Chem. Rev. 2011; 255: 1440
- 22 Peters JC, Feldman JD, Tilley TD. J. Am. Chem. Soc. 1999; 121: 9871
- 23 Glaser PB, Tilley TD. J. Am. Chem. Soc. 2003; 125: 13640
- 24 Corey JY, Braddock-Wilking J. Chem. Rev. 1999; 99: 175
- 25a Iluc VM, Hillhouse GL. Tetrahedron 2006; 62: 7577
- 25b Chen W, Shimada S, Tanaka M, Kobayashi Y, Saigo K. J. Am. Chem. Soc. 2004; 126: 8072
- 25c Zell T, Schaub T, Radacki K, Radius U. Dalton Trans. 2011; 40: 1852
- 26 MacMillan SN, Hill Harman W, Peters JC. Chem. Sci. 2014; 5: 590
- 27a Diercks R, Stamp L, Dieck HT. Chem. Ber. 1984; 117: 1913
- 27b Diercks R, Stamp L, Kopf J, tom Dieck H. Angew. Chem., Int. Ed. Engl. 1984; 23: 893
- 27c Diercks R, tom Dieck H. Chem. Ber. 1985; 118: 428
- 28a Tanaka K, Toyoda K, Wada A, Shirasaka K, Hirano M. Chem. Eur. J. 2005; 11: 1145
- 28b Perekalin DS, Karslyan EE, Trifonova EA, Konovalov AI, Loskutova NL, Nelyubina YV, Kudinov AR. Eur. J. Inorg. Chem. 2013; 481
For selected recent examples of multinuclear catalysts featuring metal–metal bonds, see:
For examples of Ni–Ni bonds that undergo chemical or electrochemical redox reactions, see: