Synlett 2016; 27(02): 272-276
DOI: 10.1055/s-0035-1560721
letter
© Georg Thieme Verlag Stuttgart · New York

Copper(I)-Catalyzed Diastereoselective Borylative Exo-Cyclization of Alkenyl Aryl Ketones

Eiji Yamamoto
Division of Chemical Process Engineering and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan   Email: hajito@eng.hokudai.ac.jp
,
Ryoto Kojima
Division of Chemical Process Engineering and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan   Email: hajito@eng.hokudai.ac.jp
,
Koji Kubota
Division of Chemical Process Engineering and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan   Email: hajito@eng.hokudai.ac.jp
,
Hajime Ito*
Division of Chemical Process Engineering and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan   Email: hajito@eng.hokudai.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 26 June 2015

Accepted after revision: 10 September 2015

Publication Date:
09 November 2015 (online)


Abstract

Copper(I)-catalyzed diastereoselective borylative exo-cyclization of alkenyl ketones with bis(pinacolato)diboron is reported. The reaction of alkenyl aryl ketones under a CuCl/Xantphos catalyst system provides four- or five-membered-ring syn-2-(borylmethyl)cycloalkanol derivatives in good yields with high syn selectivities. The utility of this method is demonstrated by further transformations of the cyclic products.

Supporting Information

 
  • References and Notes


    • For examples of palladium-catalyzed carboborations, see:
    • 1a Marco-Martínez J, López-Carrillo V, Buñuel E, Simancas R, Cárdenas DJ. J. Am. Chem. Soc. 2007; 129: 1874
    • 1b Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
    • 1c Marco-Martínez J, Buñuel E, López-Durán R, Cárdenas DJ. Chem. Eur. J. 2011; 17: 2734

      For examples of copper(I)-catalyzed borylative aldol reactions, see:
    • 2a Chen I.-H, Yin L, Itano W, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 11664
    • 2b Burns AR, Solana González J, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 10827

      For examples of copper(I)-mediated carboboration of alkynes, see:
    • 3a Okuno Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2011; 50: 920
    • 3b Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 3c Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 3d Liu P, Fukui Y, Tian P, He Z.-T, Sun C.-Y, Wu N.-Y, Lin G.-Q. J. Am. Chem. Soc. 2013; 135: 11700

      For examples of copper(I)-catalyzed intermolecular carboboration of C–C double bonds, see:
    • 4a Yoshida H, Kageyuki I, Takaki K. Org. Lett. 2013; 15: 952
    • 4b Meng F, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 11304
    • 4c Semba K, Bessho N, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2014; 53: 9007
    • 4d Meng F, McGrath KP, Hoveyda AH. Nature 2014; 513: 367

      For transition-metal-free carboborations, see:
    • 5a Nagao K, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 10605
    • 5b Roscales S, Aurelio G, Csákÿ AG. Org. Lett. 2015; 17: 1605
    • 5c Nagao K, Ohmiya H, Sawamura M. Org. Lett. 2015; 17: 1304

      For carboboration with coorperative Cu/Pd catalysis, see:
    • 6a Semba K, Nakao Y. J. Am. Chem. Soc. 2014; 136: 7567
    • 6b Smith KB, Logan KM, You W, Brown MK. Chem. Eur. J. 2014; 20: 12032
    • 7a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011. 2nd revised ed
    • 7b Boron Compounds, Science of Syntheses . Vol. 6. Kaufmann D. Georg Thieme Verlag; Stuttgart: 2005

      For selected examples, see:
    • 8a Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 29: 982
    • 8b Laitar DS, Müller P, Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
    • 8c Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
    • 8d Lillo V, Fructos MR, Ramírez J, Braga AA. C, Maseras F, Díaz-Requejo MM, Pérez PJ, Fernández E. Chem. Eur. J. 2007; 13: 2614
    • 8e Kleeberg C, Dang L, Lin Z, Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
    • 8f Park JK, Lackey HH, Ondrusek BA, McQuade DT. J. Am. Chem. Soc. 2011; 133: 2410
    • 8g Matsuda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2013; 135: 4934
    • 9a Ito H, Yamanaka H, Tateiwa J.-I, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
    • 9b Ito H, Kawakami C, Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
    • 9c Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 9d Ito H, Okura T, Matsuura K, Sawamura M. Angew. Chem. Int. Ed. 2010; 49: 560
    • 9e Ito H, Kunii S, Sawamura M. Nat. Chem. 2010; 2: 972
    • 9f Ito H, Kubota K. Org. Lett. 2012; 14: 890
    • 9g Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2015; 137: 420

      For copper(I)-catalyzed borylative cyclizations, see:
    • 10a Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
    • 10b Ito H, Toyoda T, Sawamura M. J. Am. Chem. Soc. 2010; 132: 5990
    • 10c Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
    • 10d Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2013; 135: 2635
    • 10e Kubota K, Iwamoto H, Yamamoto E, Ito H. Org. Lett. 2015; 17: 620

      For selected examples, see:
    • 11a Paquette LA, Parker GD, Tei T, Dong S. J. Org. Chem. 2007; 72: 7125
    • 11b Tanaka N, Okasaka M, Ishimaru Y, Takaishi Y, Sato M, Okamoto M, Oshikawa T, Ahmed SU, Consentino LM, Lee K.-H. Org. Lett. 2005; 7: 2997
    • 11c Yoshikawa K, Kaneko A, Matsumoto Y, Hama H, Arihara S. J. Nat. Prod. 2006; 69: 1267
    • 12a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 12b Leemans E, D’hooghe M, De Kimpe N. Chem. Rev. 2011; 111: 3268
    • 12c Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
  • 13 Parella R, Gopalakrishnan B, Babu SA. J. Org. Chem. 2013; 78: 11911
  • 14 McIntosh ML, Moore CM, Clark TB. Org. Lett. 2010; 12: 1996

    • For selected examples of stereoselective cyclobutanol synthesis from simple starting materials, see:
    • 15a Ihara M, Taniguchi T, Makita K, Takano M, Ohnishi M, Taniguchi N, Fukumoto K, Kabuto C. J. Am. Chem. Soc. 1993; 115: 8107
    • 15b Takeda K, Tanaka T. Synlett 1999; 705
    • 15c Takasu K, Misawa K, Yamada M, Furuta Y, Taniguchi T, Ihara M. Chem. Commun. 2000; 1739
    • 15d Takasu K, Ueno M, Ihara M. J. Org. Chem. 2001; 66: 4667
    • 15e Saphier S, Sinha SC, Keinan E. Angew. Chem. Int. Ed. 2003; 42: 1378
    • 15f Inanaga K, Takasu K, Ihara M. J. Am. Chem. Soc. 2005; 127: 3668
    • 15g Avenoza A, Busto JH, Canal N, Peregrina JM, Pérez-Fernández M. Org. Lett. 2005; 7: 3597
    • 15h Baktharaman S, Selvakumar S, Singh VK. Org. Lett. 2006; 8: 4335

      For examples containing syn-selective cyclobutanol synthesis from simple starting materials, see:
    • 16a Canales E, Corey EJ. J. Am. Chem. Soc. 2007; 129: 12686
    • 16b Darses B, Greene AE, Poisson J.-F. Org. Lett. 2010; 12: 3994
    • 16c Nagamoto Y, Yamaoka Y, Fujimura S, Takemoto Y, Takasu K. Org. Lett. 2014; 16: 1008
  • 17 Typical Procedure for the Borylative Cyclization/Esterification of Aryl Alkenyl Ketones: CuCl (0.025 mmol) and (pin)B–B(pin) (0.60 mmol), Xantphos (0.025 mmol), t-BuOK (0.60 mmol) were placed in an oven-dried vial in a glove box. After the vial was removed from the glove box, DME (1.0 mL) was added to the vial and stirred for 30 min. Then, 1a (0.50 mmol) was added to the mixture at 30 °C. After the reaction was complete, the reaction mixture was cooled to 0 °C. After that, DMAP [0.05 mmol in THF (1 mL)] and i-Pr2NEt (0.52 mmol) were added to the mixture, and 4-(trifluoromethyl)benzoyl chloride (0.53 mmol) was added dropwise. After the reaction was complete, the reaction mixture was passed through a short florisil column eluting with Et2O. The crude material was purified by silica gel column chromatography to give syn-4a (129.7 mg, 0.282 mmol, 56% yield) as a white solid. 1H NMR (392 MHz, CDCl3): δ = 1.25 (s, 6 H), 1.26 (s, 6 H), 1.36 (dd, J = 10.0, 15.9 Hz, 1 H), 1.46 (dd, J = 6.3, 15.7 Hz, 1 H), 1.68–1.79 (m, 1 H), 2.06–2.16 (m, 1 H), 2.62–2.72 (m, 1 H), 2.80–2.91 (m, 1 H), 2.97–3.07 (m, 1 H), 7.21–7.28 (m, 1 H), 7.30–7.36 (m, 2 H), 7.47–7.51 (m, 2 H), 7.68 (d, J = 7.8 Hz, 2 H), 8.20 (d, J = 7.8 Hz, 2 H). 13C NMR (99 MHz, CDCl3): δ = 12.5 (br, BCH2), 23.0 (CH2), 24.80 (Me), 24.86 (Me), 30.2 (CH2), 44.0 (CH), 83.2 (C), 85.4 (C), 125.0 (q, J C–F = 273.8 Hz, C), 125.1 (CH), 125.2–152.4 (m, CH), 127.2 (CH), 128.3 (CH), 130.0 (CH), 134.22 (q, J C–F = 32.7 Hz, C), 134.28 (C), 143.1 (C), 163.8 (C). HRMS (ESI): m/z [M + Na]+ calcd for C25H28O4BF3Na: 482.19613; found: 482.19653.
  • 18 Several derivatization methods were examined to improve the isolated yield, but these were not successful.
  • 19 The cuprate-carbonyl π complex may be formed in this step; see: Bertz SH, Hardin RA, Heavey TJ, Ogle CA. Angew. Chem. Int. Ed. 2013; 52: 10250