Synlett 2015; 26(17): 2385-2388
DOI: 10.1055/s-0035-1560712
cluster
© Georg Thieme Verlag Stuttgart · New York

Dimerization of Aryl Sulfonates by in situ Generated Nickel(0)

Jacques Maddaluno
Laboratoire COBRA – CNRS UMR 6014 & FR 3038, Université de Rouen INSA de Rouen, 76821 Mt St Aignan Cedex, France   Email: muriel.durandetti@univ-rouen.fr
,
Muriel Durandetti*
Laboratoire COBRA – CNRS UMR 6014 & FR 3038, Université de Rouen INSA de Rouen, 76821 Mt St Aignan Cedex, France   Email: muriel.durandetti@univ-rouen.fr
› Author Affiliations
Further Information

Publication History

Received: 16 September 2015

Accepted after revision: 24 September 2015

Publication Date:
29 September 2015 (online)

This paper is dedicated to the memory of Professor Manfred Schlosser.

Abstract

A mild and user-friendly nickel-catalyzed method for the reductive homocoupling of aromatic tosylates is presented. The reaction proceeds between room temperature and 60 °C, with stable substrates (ArOTs) easily prepared from inexpensive and commercially available phenols or naphthols. It relies on a catalytic amount (10 mol%) of a robust catalyst (NiBr2bipy) that does not require the preparation of sensitive organometallic intermediates. Yields are good to excellent.

Supporting Information

 
  • References and Notes

    • 1a Schlosser M. J. Organomet. Chem. 1967; 8: 9
    • 1b Schlosser M, Desponds O, Lehmann R, Moret E, Rauchschwalbe G. Tetrahedron 1993; 49: 10175
    • 1c Schlosser M In Organometallics in Synthesis: A Manual . Schlosser M. Wiley; London: 1994
    • 1d Schlosser M In Organometallics in Synthesis: A Manual . 2nd ed., Schlosser M. Wiley; Chichester: 2002
    • 1e Schlosser M. Angew. Chem Int. Ed. 2005; 44: 376
    • 1f Cottet F, Castagnetti E, Schlosser M. Synthesis 2005; 798
    • 1g Schlosser M, Mangano G, Leroux F. Eur. J. Org. Chem. 2005; 5049
    • 1h Ruzziconi R, Spizzichino S, Giurg M, Castagnetti E, Schlosser M. Synthesis 2010; 1531
    • 2a Ruzziconi R, Spizzichino S, Mazzanti A, Lunazzi L, Schlosser M. Org. Biomol. Chem. 2010; 8: 4463
    • 2b Mazzanti A, Lunazzi L, Ruzziconi R, Spizzichino S, Schlosser M. Chem. Eur. J. 2010; 16: 9186
    • 2c Lunazzi L, Mancinelli M, Mazzanti A, Lepri S, Ruzziconi R, Schlosser M. Org. Biomol. Chem. 2012; 10: 1847
    • 3a Wu X.-F, Anbrasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9047
    • 3b Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 4a Jolly PW, Willic G In The Organic Chemistry of Nickel . Vol. 1 and 2. Academic Press; New York: 1974
    • 4b Ikeda S.-i In Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
    • 4c Hachiya H, Hirano K, Satoh T, Miura M. ChemCatChem 2010; 2: 1403
    • 4d Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
    • 4e Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 5743
    • 5a Durandetti M, Nédélec J.-Y, Périchon J. J. Org. Chem. 1996; 61: 1748
    • 5b de França KW. R, Navarro M, Léonel E, Durandetti M, Nédélec JY. J. Org. Chem. 2002; 67: 1838
    • 5c Durandetti M, Périchon J. Synthesis 2004; 3079
    • 5d Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
    • 5e Gosmini C, Bassene-Ernst C, Durandetti M. Tetrahedron 2009; 65: 6141
    • 5f Durandetti M, Hardou L, Clément M, Maddaluno J. Chem. Commun. 2009; 4753
    • 5g Durandetti M, Hardou L, Lhermet R, Rouen M, Maddaluno J. Chem. Eur. J. 2011; 17: 12773
    • 6a Jutand A, Mosleh A. J. Org. Chem. 1997; 62: 261
    • 6b Huang X, Anderson KW, Zim D, Jiang L, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 6653
    • 6c Wilson DA, Wilson CJ, Rosen BM, Percec V. Org. Lett. 2008; 10: 4879
    • 6d Liao X, Weng Z, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 195
    • 6e Gooßen LJ, Rodríguez N, Lange PP, Linder C. Angew. Chem. Int. Ed. 2010; 49: 1111
    • 7a Zim D, Lando VR, Dupont J, Monteiro AL. Org. Lett. 2001; 3: 3049
    • 7b Tang Z.-Y, Hu Q.-S. J. Am. Chem. Soc. 2004; 126: 3058
    • 7c Gao C.-Y, Yang L.-M. J. Org. Chem. 2008; 73: 1624
    • 7d Kim C.-B, Jo H, Ahn B.-K, Kim CK, Park K. J. Org. Chem. 2009; 74: 9566
    • 7e Wilson DA, Wilson CJ, Moldoveanu C, Resmerita A.-M, Corcoran P, Hoang LM, Rosen BM, Percec V. J. Am. Chem. Soc. 2010; 132: 1800
    • 7f Mesganaw T, Garg NK. Org. Process Res. 2013; 17: 29
    • 7g Jerozek RL, Zhang N, Leowanawat P, Bunner MH, Gutsche N, Pesti AK. R, Olsen JT, Percec V. Org. Lett. 2014; 16: 6326
    • 7h Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 8a Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 8b Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
  • 9 Bringmann G, Walter R, Weirich R. Angew. Chem., Int. Ed. Engl. 1990; 29: 977
  • 10 Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 2174
    • 11a Kuroboshi M, Waki Y, Tanaka H. J. Org. Chem. 2003; 68: 3938
    • 11b Nising CF, Schmid UK, Nieger M, Bräse S. J. Org. Chem. 2004; 69: 6830
    • 11c Amatore C, Cammoun C, Jutand A. Eur. J. Org. Chem. 2008; 4567
    • 11d Robo MT, Prinsell MR, Weix DJ. J. Org. Chem. 2014; 79: 10624
    • 12a Semmelhack MF, Helquist PM, Jones LD. J. Am. Chem. Soc. 1971; 93: 5908
    • 12b Kende AS, Liebeskind LS, Braitsch DM. Tetrahedron Lett. 1975; 16: 3375
    • 12c Lourak M, Vanderesse R, Fort Y, Caubère P. J. Org. Chem. 1989; 54: 4840
    • 12d Iyoda M, Otsuka H, Sato K, Nisato N, Oda M. Bull. Chem. Soc. Jpn. 1990; 63: 80
    • 12e Percec V, Bae J.-Y, Zhao M, Hill DH. J. Org. Chem. 1995; 60: 176
    • 12f Hong R, Hoen R, Zhang J, Lin G.-Q. Synlett 2001; 1527
    • 13a Troupel M, Rollin Y, Sibille S, Périchon J. J. Organomet. Chem. 1980; 202: 435
    • 13b Rollin Y, Troupel M, Tuck DG, Périchon J. J. Organomet. Chem. 1986; 303: 131
    • 13c Meyer G, Rollin Y, Périchon J. J. Organomet. Chem. 1987; 333: 263
  • 14 Amatore C, Jutand A. J. Electroanal. Chem. 1991; 306: 125
    • 15a Durandetti M, Devaud M, Périchon J. New J. Chem. 1996; 20: 659
    • 15b Jiang F, Ren Q. J. Organomet. Chem. 2014; 757: 72
    • 16a Buonomo JA, Everson DA, Weix DJ. Synthesis 2013; 3099
    • 16b Liao L.-Y, Kong X.-R, Duan X.-F. J. Org. Chem. 2014; 79: 777
  • 17 Representative Procedure for the Nickel-Catalyzed Formation of BiarylsTo a solution of aryl tosylate (2 mmol, 1 equiv) in anhydrous DMF (5 mL) under an argon atmosphere at room temperature (or 60 °C for o-substituted or electron-donating substituents) was added manganese (4 mmol, 2 equiv) followed by NiBr2bipy (0.2 mmol, 0.1 equiv), then rapidly TFA (10 μL). The medium was vigorously stirred, and the disappearance of starting material was monitored by gas chromatography. The reaction was stopped after the aryl tosylate was consumed (ca. 1 h). The mixture was hydrolyzed with HCl 1 M (5 mL) and diluted with Et2O (15 mL). The aqueous layer was extracted with Et2O (2 × 15 mL), then combined organic layers were washed with water (2 × 15 mL) and brine (15 mL), dried over anhydrous MgSO4, and concentrated. The crude was purified by recrystallization.1,1′-Biphenyl18 (CAS registry number: 92-52-4)The pure product is isolated in 91% as white crystals; mp 68 °C. 1H NMR (300 MHz, CDCl3): δ = 7.35 (t, J = 7.4 Hz, 2 H), 7.4 (t, J = 7.7 Hz, 4 H), 7.59 (d, J = 7.8 Hz, 4 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 127.3 (2 C), 127.4, 128.9 (2 C), 141.4 ppm. MS (EI, 70 eV): m/z = 154 [M+], 77 [M/2, base].
  • 18 Cahiez G, Chaboche C, Mahuteau-Betzer F, Ahr M. Org. Lett. 2005; 7: 1943