Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(01): 169-172
DOI: 10.1055/s-0035-1560593
DOI: 10.1055/s-0035-1560593
letter
Synthesis of Oxetane- and Azetidine-Containing Spirocycles Related to the 2,5-Diketopiperazine Framework
Further Information
Publication History
Received: 13 October 2015
Accepted after revision: 03 November 2015
Publication Date:
24 November 2015 (online)
This article is dedicated to Professor Steven V. Ley CBE FRS on the occasion of his 70th birthday
Abstract
A simple two-step sequence is used to efficiently make novel spirocyclic analogues of the diketopiperazine nucleus. Conjugate addition of chiral α-amino esters to nitroalkenes, generated from oxetan-3-one or N-Boc-azetidin-3-one, followed by nitro group reduction provides, after spontaneous cyclization, the spirocycles in good overall yields. These rigid scaffolds can be functionalized by selective N-alkylations as well as by carbonyl reduction to the corresponding piperazines.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560593. Experimental procedures and characterization data for all new compounds, copies of 1H and 13C NMR spectra of compounds 9a–n, 12a–n, 13–15 and chiral Pirkle analysis of 12a are included.
- Supporting Information
-
References and Notes
- 1 For a review on the use of spirocyclic scaffolds in drug discovery, see: Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 2a Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
- 2b Undheim K. Synthesis 2014; 46: 1957
- 3a Burkhard JA, Guérot C, Knust H, Rogers-Evans M, Carreira EM. Org. Lett. 2010; 12: 1944
- 3b Li DB, Rogers-Evans M, Carreira EM. Org. Lett. 2011; 13: 6134
- 3c Burkhard JA, Guérot C, Knust H, Carreira EM. Org. Lett. 2012; 14: 66
- 3d Kumar S, Thornton PD, Painter TO, Jain P, Downard J, Douglas JT, Santini C. J. Org. Chem. 2013; 78: 6529
- 3e Kumar S, Thornton PD, Santini C. ACS Comb. Sci. 2013; 15: 564
- 3f Siau W.-Y, Bode JW. J. Am. Chem. Soc. 2014; 136: 17726
- 3g Nocket AJ, Weinreb SM. Angew. Chem. Int. Ed. 2014; 53: 14162
- 3h Zhang H.-M, Gao Z.-H, Ye S. Org. Lett. 2014; 16: 3079
- 3i Beasley BO, Alli-Balogun A, Clarkson GJ, Shipman M. Tetrahedron Lett. 2014; 55: 541
- 3j Li J.-L, Sahoo B, Daniliuc C.-G, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10515
- 3k Martinand-Lurin E, Gruber R, Retailleau P, Fleurat-Lessard P, Dauban P. J. Org. Chem. 2015; 80: 1414
- 3l Fleming AM, Armentrout EI, Zhu J, Muller JG, Burrows CJ. J. Org. Chem. 2015; 80: 711
- 3m Chernykh AV, Radchenko DS, Grygorenko OO, Daniliuc CG, Volochnyuk DM, Komarov IV. J. Org. Chem. 2015; 80: 3974
- 3n Nocquet P.-A, Hensienne R, Wencel-Delord J, Wimmer E, Hazelard D, Compain P. Org. Biomol. Chem. 2015; 13: 9176
- 3o Gurry M, McArdle P, Aldabbagh F. Molecules 2015; 20: 13864
- 4 For a comprehensive review, see: Borthwick AD. Chem. Rev. 2012; 112: 3641
- 5a Daugan A, Grondin P, Ruault C, Le Monnier de Gouville A.-C, Coste H, Kirilovsky J, Hyafil F, Labaudinière R. J. Med. Chem. 2003; 46: 4525
- 5b Daugan A, Grondin P, Ruault C, Le Monnier de Gouville A.-C, Coste H, Linget JM, Kirilovsky J, Hyafil F, Labaudinière R. J. Med. Chem. 2003; 46: 4533
- 6a Geden JV, Beasley BO, Clarkson GJ, Shipman M. J. Org. Chem. 2013; 78: 12243
- 6b Beasley BO, Clarkson GJ, Shipman M. Tetrahedron Lett. 2012; 53: 2951
- 7 Powell NH, Clarkson GJ, Notman R, Raubo P, Martin NG, Shipman M. Chem. Commun. 2014; 50: 8797
- 8 We have previously reported the isolation of 12g as an unwanted byproduct in the synthesis of oxetane-based peptidomimetics, see ref. 7.
- 9 For other recent work on piperazinone synthesis, see: Treder AP, Tremblay M.-C, Yudin AK, Marsault E. Org. Lett. 2014; 16: 4674
- 10a Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K. J. Med. Chem. 2010; 53: 3227
- 10b See also: Burkhard JA, Wuitschik G, Plancher J.-M, Rogers-Evans M, Carreira EM. Org. Lett. 2013; 15: 4312
- 11 McLauglin M, Yazaki R, Fessard TC, Carreira EM. Org. Lett. 2014; 16: 4070
- 12 Phelan JP, Patel EJ, Ellman JA. Angew. Chem. Int. Ed. 2014; 53: 11329
- 13 Burkhard JA, Tchitchanov BH, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 5379
- 14 The synthesis of 10 and 11 was realized as previously reported, see ref. 7.
- 15 General Procedure for Nitro Reduction and Cyclization to 12 The substrate (1 equiv) and Raney Ni (1.0 mL, slurry in H2O) in MeOH (10 mL/mmol) were stirred at r.t. under an atmosphere of H2 (balloon) for 16 h. The reaction mixture was filtered through a plug of Celite®, eluting with EtOAc. The eluent was concentrated under reduced pressure, and the crude product was purified by column chromatography. Using this method, (S)-10 (325 mg, 1.32 mmol) gave, after column chromatography (0–10% MeOH in EtOAc), (S)-12a (197 mg, 81%) as white solid. Rf = 0.31 (10% MeOH in EtOAc); mp 153–158 °C; [α]D 25 –118.1 (c 0.10, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 6.36 (1H, br s, NHCO), 4.62 (2H, s, OCH2), 4.50 (1H, d, J = 7.1 Hz, OCHH), 4.45 (1H, d, J = 7.1 Hz, OCHH), 3.65 (1H, dd, J = 11.5, 4.6 Hz, NHCHH), 3.51–3.40 (2H, m, NHCHH, CHi-Pr), 2.50–2.34 (1H, m, CHMe2), 1.80 (1H, br s, NH), 0.99 (3H, d, J = 7.3 Hz, CH3), 0.91 (3H, d, J = 6.8 Hz, CH3) ppm. 13C NMR (75 MHz, CDCl3): δ = 170.4 (C), 81.5 (CH2), 79.3 (CH2), 59.3 (CH), 54.7 (C), 48.4 (CH2), 29.5 (CH), 18.5 (CH3), 15.6 (CH3) ppm. IR (film): 3253, 2965, 2869, 1649, 1321, 980 cm–1. MS (ES+): m/z = 185 [M + H]+, 207 [M + Na]+. HRMS (ES+): m/z calcd for C9H17N2O2 [M + H]+: 185.1285; found: 185.1284.
- 16 CCDC 1430502 (12j) and 1430503 (12a) contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk.
For reviews on spirocyclic systems containing four-membered heterocycles, see:
For illustrative recent strategies to spirocycles, see: