Synlett, Inhaltsverzeichnis Synlett 2016; 27(02): 294-300DOI: 10.1055/s-0035-1560576 letter © Georg Thieme Verlag Stuttgart · New YorkConformationally Flexible C 3-Symmetric 1,3-Oxazoles as Molecular Scaffolds Authors Institutsangaben Shailesh R. Shah* a Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India eMail: shailesh-chem@msubaroda.ac.in Ruchita R. Thakore a Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India eMail: shailesh-chem@msubaroda.ac.in Trupti A. Vyas a Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara 390002, India eMail: shailesh-chem@msubaroda.ac.in Balasubramanian Sridhar b Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Erratum zu diesem Artikel:Conformationally Flexible C3-Symmetric 1,3-Oxazoles as Molecular ScaffoldsSynlett 2016; 27(02): e3-e3DOI: 10.1055/s-0035-1560402 Dedicated to Professor Leo Paquette on the occasion of his 81st birthday Abstract Flexible-arm, C 3-symmetric tris-oxazoles are synthesized for their applications in supramolecular chemistry and materials science. The C 3-symmetry is introduced starting from 1,3,5-trimethylbenzene and carrying out threefold reactions at each stage of the synthesis. The applicability of these tris-oxazoles is demonstrated by transforming a representative example into a highly fluorescent material. This is accomplished by conjugation with an aromatic moiety via palladium(0)-catalyzed direct arylation at C-2 of the oxazole. A unique molecular arrangement in the crystal structure is observed. Key words Key words C 3-symmetric molecules - 1,3-oxazoles - tris-aromatic aldehydes - van Leusen synthesis - fluorescent materials Volltext Referenzen References and Notes 1a Moberg C. Angew. Chem. Int. Ed. 1998; 37: 248 1b Gibson SE, Castaldi MP. Angew. Chem. Int. Ed. 2006; 45: 4718 1c Gibson SE, Castaldi MP. Chem. Commun. 2006; 3045 2a Dash J, Trawny D, Rabe JP, Reissing HU. Synlett 2015; 26: 1486 2b Shokri A, Deng SH. M, Wang XB, Kass SR. Org. Chem. Front. 2014; 1: 54 2c Wang X, Hof F. Beilstein J. Org. Chem. 2012; 8: 1 2d Dai Z, Canary JW. New J. Chem. 2007; 31: 1708 2e Nativi C, Cacciarini M, Francesconi O, Vacca A, Moneti G, Ienco A, Roelens S. J. Am. Chem. Soc. 2007; 129: 4377 2f Kuswandi B, Nuriman Verboom W, Reinhoudt DN. Sensors 2006; 6: 978 3a Bera M, Ghosh TK, Akhuli B, Ghosh P. J. Mol. Catal. A: Chem. 2015; 408: 287 3b Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H. Chem. Eur. J. 2012; 18: 8448 3c Moorthy JN, Saha S. Eur. J. Org. Chem. 2010; 6359 3d Liu YR, He L, Zhang J, Wang X, Su CY. Chem. Mater. 2009; 21: 557 4a Chabre YM, Papadopoulos A, Arnold AA, Roy R. Beilstein J. Org. Chem. 2014; 10: 1524 4b Gutièrrez-Abad R, Illa O, Ortuño RM. Org. Lett. 2010; 12: 3148 4c Pérez EM, Illescas BM, Herranz MA, Martin N. New J. Chem. 2009; 33: 228 5a Jana A, Paikar A, Bera S, Maity S, Haldar D. Org. Lett. 2014; 16: 38 5b Prabhu DD, Sivadas AP, Das S. J. Mater. Chem. C 2014; 2: 7039 5c Huang H, Fu Q, Zhuang S, Liu Y, Wang L, Chen J, Ma D, Yang C. J. Phys. Chem. C 2011; 115: 4872 5d García-Frutos EM, Omenat A, Barberá J, Serrano JL, Gómez-Lor B. J. Mater. Chem. 2011; 21: 6831 5e Ryu MH, Choi JW, Kim HJ, Park N, Cho BK. Angew. Chem. Int. Ed. 2011; 123: 5855 5f Yelamaggad CV, Achalkumar AS, Rao DS. S, Prasad SK. J. Org. Chem. 2009; 74: 3168 6a Bharadwaj VK, Sharma H, Kaur N, Singh N. New J. Chem. 2013; 37: 4192 6b Turner DR, Paterson MJ, Steed JW. J. Org. Chem. 2006; 71: 1598 6c Kim J, Kim SG, Seong HR, Ahn KH. J. Org. Chem. 2005; 70: 7227 6d Ihm H, Yun S, Kim HG, Kim JK, Kim KS. Org. Lett. 2002; 4: 2897 7a Jin Z. Nat. Prod. Rep. 2013; 30: 869 7b Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. J. Nat. Prod. 2007; 70: 412 7c Pingali H, Jain M, Shah S, Patil P, Makadia P, Zaware P, Sairam KV. V. M, Jamili J, Goel A, Patel M, Patel P. Bioorg. Med. Chem. Lett. 2008; 18: 6471 7d Makadia P, Shah SR, Pingali H, Zaware P, Patel D, Pola S, Thube B, Priyadarshini P, Suthar D, Shah M, Giri S, Trivedi C, Jain M, Patel P, Bahekar R. Bioorg. Med. Chem. 2011; 19: 771 8a Vila-Vicosa D, Francesconi O, Machuqueiro M. Beilstein J. Org. Chem. 2014; 10: 1513 8b Koch N, Mazik M. Synthesis 2013; 45: 3341 8c Ingale SA, Seela F. J. Org. Chem. 2012; 77: 9352 8d Tanabe K, Suzui Y, Hasegawa M, Kato T. J. Am. Chem. Soc. 2012; 134: 5652 8e Singh N, Jang DO. Org. Lett. 2007; 9: 1991 9 For the only previous report on rigid C 3-symmetric oxazoles, see: Kotha S, Shah VR. Synthesis 2007; 23: 3653 10a Mahuteau-Betzer F, Piguel S. Tetrahedron Lett. 2013; 54: 3188 10b Silva DL, De Boni L, Correa DS, Costa SC. S, Hidalgo AA, Zilio SC, Canuto S, Mendonca CR. Opt. Mater. 2012; 34: 1013 10c Park HJ, Lim CS, Kim ES, Han JH, Lee TH, Chun HJ, Cho BR. Angew. Chem. Int. Ed. 2012; 51: 2673 10d Krishnamurthy NV, Reddy AR, Bhudevi B. J. Fluoresc. 2008; 18: 29 11a Yeung MC. L, Yam VW. W. Chem. Soc. Rev. 2015; 44: 4192 11b Cotruvo JA. Jr, Aron AT, Ramos-Torres KM, Chang CJ. Chem. Soc. Rev. 2015; 44: 4400 11c Carter KP, Young AM, Palmer AE. Chem. Rev. 2014; 114: 4564 11d Domaille DW, Que EL, Chang CJ. Nat. Chem. Biol. 2008; 4: 168 12a Vyas TA. Ph.D. Dissertation. The M. S. University of Baroda; India: 2004 12b Mehta G, Panda G, Shah SR, Kunwar AC. J. Chem. Soc., Perkin Trans. 1 1997; 2269 12c Mehta G, Shah SR, Ravikumar K. J. Chem. Soc., Chem. Commun. 1993; 1006 12d Mehta G, Shah SR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1993; 32: 774 13a Jadav P, Bahekar R, Shah SR, Patel D, Joharapurkar A, Jain M, Sairam KV. V. M, Singh P. Bioorg. Med. Chem. Lett. 2014; 24: 1918 13b Patel D, Jain M, Shah SR, Bahekar R, Jadav P, Shah K, Joharapurkar A, Shaikh M, Sairam KV. V. M. Med. Chem. 2013; 9: 660 13c Jadav P, Bahekar R, Shah SR, Patel D, Joharapurkar A, Samadhan K, Jain M, Shaikh M, Sairam KV. V. M. Bioorg. Med. Chem. Lett. 2012; 22: 3516 14 Shah SR, Navathe SS, Dikundwar AG, Guru Row TN, Vasella AT. Eur. J. Org. Chem. 2013; 264 15a Bray DJ, Lindoy LF, McMurtrie JC. Acta. Crystallogr., Sect. E 2004; 60: 6 15b Samy AN, Alexander V. Dalton Trans. 2011; 40: 8630 15c Cheng F, Chen J, Wang F, Tang N, Chen L. Z. Anorg. Allg. Chem. 2011; 637: 766 16 van der Made AW, van der Made RH. J. Org. Chem. 1993; 58: 1262 17 See the Supporting Information for further details. 18 1,3,5-Tris[(2-formyl-6-methoxy)phenyloxymethyl)-2,4,6-trimethylbenzene (2e); Typical Procedure To a stirred solution of a 2-hydroxy-3-methoxybenzaldehyde (0.23 g, 1.5 mmol) in acetone was added K2CO3 (0.62 g, 4.5 mmol) followed by 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) (0.2 g, 0.5 mmol). The resulting mixture was stirred at r.t. for 3 h. On completion of the reaction (TLC), the acetone was evaporated to a small volume followed by the addition of cold H2O. The solid thus obtained was filtered and recrystallized from EtOH to give pure tris-aromatic aldehyde 2e. Yield: 0.18 g (70%); white solid; mp 208 °C. IR (KBr): 2841, 1693, 1583, 1481, 1359, 1265, 1249, 1209 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.45 (s, 9 H, –CH3), 3.96 (s, 9 H, –OCH3), 5.45 (s, 6 H, –OCH2–), 7.12–7.20 (m, 6 H), 7.39 (dd, J 1 = 7.2 Hz, J2 = 2.0 Hz, 3 H), 10.15 (s, 3 H, –CHO). 13C NMR (100 MHz, CDCl3): δ = 16.0 (–CH3), 56.0 (–OCH3), 77.0 (–OCH2), 118.1, 119.0, 123.2, 129.9, 132.1, 140.3, 151.4, 153.6, 190.9 (–CHO). Anal. Calcd for C36H36O9: C, 70.57; H, 5.92. Found: C, 69.91; H, 6.79. 19 van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 2369 20 1,3,5-Tris[6-methoxy-2-(1,3-oxazol-5-yl)phenyloxymethyl]-2,4,6-trimethylbenzene (3e); Typical Procedure To a two-necked round-bottomed flask were added tris-aldehyde 2e (0.1 g, 0.16 mmol), p-toluenesulfonylmethyl isocyanide (TosMIC) (0.13 g, 0.65 mmol), K2CO3 (0.16 g, 1.2 mmol) and MeOH. The resulting mixture was heated at reflux temperature for 3–4 h. On completion of the reaction (TLC), the MeOH was evaporated under reduced pressure and the residue was purified by column chromatography on silica (EtOAc–hexanes, 6:4 to 8:2) to give the corresponding tris-1,3-oxazole 3e. Yield: 0.07 g (60%); white solid; mp 210 °C. IR (KBr): 2939, 2834, 1589, 1560, 1503, 1471, 1265 cm–1. 1H NMR (100 MHz, CDCl3): δ = 2.45 (s, 9 H, –CH3), 3.94 (s, 9 H, –OCH3), 5.31 (s, 6 H, –OCH2–), 6.97 (dd, J 1 = 8.2 Hz, J 2 = 1.2 Hz, 3 H), 7.13 (t, J = 8.0 Hz, 3 H), 7.30 (s, 3 H, oxazole H), 7.35 (dd, J 1 = 8.2 Hz, J 2 = 1.2 Hz, 3 H), 7.87 (s, 3 H, –N=CH–, oxazole H). 13C NMR (100 MHz, CDCl3): δ = 16.1 (–CH3), 55.9 (–OCH3), 70.0 (–OCH2), 112.4, 118.2, 122.1, 123.9, 125.7, 132.5, 139.5, 145.1, 153.1. HRMS (Q-TOF MS ES+): m/z [M]+ calcd for C42H39N3O9: 729.2686; found: 729.2677. 21 Crystal data for compound 3a (CCDC 1403715): C39H33N3O6 (M = 639.68): triclinic space group P-1 (no. 2), a = 11.0751(12) Å, b = 11.1638(12) Å, c = 13.9139(15) Å, α = 100.558(2)°, β = 108.883(2)°, γ = 98.899(2)°, V = 1557.3(3) Å3, Z = 2, T = 294.15 K, μ(MoKα) = 0.093 mm–1, Dcalc = 1.364 g/mm3, 18425 reflections measured (3.2 ≤ 2θ ≤ 56.1), 7290 unique (R int = 0.0235) which were used in all calculations. The final R 1 was 0.0659 [>2σ(I)] and wR 2 was 0.1933 (all data). 22 For similar coupling under microwave conditions, see: Besselievre F, Mahuteau-Betzer F, Grierson DS, Piguel S. J. Org. Chem. 2008; 73: 3278 23 1,3,5-Tris[4-(2-phenyl-1,3-oxazol-5-yl)phenyloxymethyl]-2,4,6-trimethylbenzene (4) To a two-necked round-bottomed flask were added compound 3a (0.1 g, 0.19 mmol), bromobenzene (0.14 g, 0.86 mmol), K2CO3 (1.6 g, 1.15 mmol), Pd(OAc)2 (6 mg, 15 mol%), CuI (0.10 g, 0.57 mmol) and DMF (4 mL). The resulting mixture was degassed and then heated to 150 °C and stirred under an N2 atm for 3 h. On completion of the reaction (TLC), the solids were removed by filtration through Celite® followed by washing with CH2Cl2. The filtrate and washings were evaporated under vacuum and the residue purified by column chromatography on silica (EtOAc–hexanes, 3:7) to afford tris(2-phenyl-1,3-oxazol-5-yl) 4. Yield: 0.05 g (35%); white solid; mp: 187 °C. IR (KBr): 2923, 1612, 1499, 1242, 1176 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.52 (s, 9 H, –CH3), 5.20 (s, 6 H, –OCH2–), 7.13 (d, J = 8.8 Hz, 6 H), 7.37 (s, 3 H, oxazole H), 7.50 (d, J = 7.6 Hz, 9 H), 7.72 (d, J = 9.2 Hz, 6 H), 8.12 (dd, J 1 = 7.8 Hz, J 2 = 2.0 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 16.0 (–CH3), 65.1 (–OCH2), 115.1, 121.2, 122.1, 125.8, 126.1, 127.5, 128.8, 130.1, 131.6, 139.5, 151.2 and 159.3 (oxazole carbons), 160.6 (Ar–O–). HRMS (Q-TOF MS ES+): m/z [M + H]+ calcd for C57H46N3O6: 868.3387; found: 868.2813; m/z [M + Na]+ calcd for C57H45N3O6Na: 890.3206; found: 890.2594. Zusatzmaterial Zusatzmaterial Supporting Information (PDF)