Synlett 2016; 27(02): 254-258
DOI: 10.1055/s-0035-1560513
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Regioselective Introduction of Aryl Substituents via Asymmetric 1,4-Addition of Boronic Acids to Linear α,β,γ,δ-Unsaturated Ketones

Kennard Gan
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: sumod@ntu.edu.sg
,
Jia Sheng Ng
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: sumod@ntu.edu.sg
,
Abdul Sadeer
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: sumod@ntu.edu.sg
,
Sumod A. Pullarkat*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: sumod@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 09 July 2015

Accepted after revison: 23 September 2015

Publication Date:
22 October 2015 (online)


Abstract

An efficient palladium(II)-catalyzed regioselective asymmetric 1,4-conjugate addition of arylboronic acids to linear α,β,γ,δ-unsaturated ketones is developed using phosphapalladacycle catalysts. The relevant 1,4-products were obtained exclusively with perfect regioselectivity, appreciable yields, and enantioselectivities. A wide range of dienone substrates as well as substituted arylboronic acids are tolerated in this protocol which proceeds at room temperature.

Supporting Information

 
  • References and Notes


    • For selected books, see:
    • 1a Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon Press; Oxford: 1992
    • 1b Tomioka K, Nagaoka Y. Comprehensive Asymmetric Catalysis . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999. Chap. 31.1
    • 1c Kanai M, Shibasaki M. Catalytic Asymmetric Synthesis . Ojima I. Wiley; New York: 2000. 2nd ed. 569-592
    • 1d Lipshutz BH. Organometallics in Organic Synthesis. A Manual . Schlosser M. Wiley; Chichester: 2002. 2nd ed. 665-680
    • 1e Berthon G, Hayashi T. Catalytic Asymmetric Conjugate Reactions . Córdova A. Wiley; Weinheim: 2010: 1-70
    • 1f Modern Organocopper Chemistry . Krause N. Wiley-VCH; Weinheim: 2002. ; and references cited therein

    • For selected reviews, see:
    • 1g Sibi M, Manyem S. Tetrahedron 2000; 56: 8033
    • 1h Krause N, Hoffmann-Röder A. Synthesis 2001; 171
    • 1i Christoffers J, Koripelly G, Rosiak A, Rössle M. Synthesis 2007; 1279
    • 1j He Q, Xie F, Fu G, Quan M, Shen C, Yang G, Gridnev ID, Zhang W. Org. Lett. 2015; 17: 2250 ; and references cited therein

      For selected rhodium-/copper-catalyzed 1,4-boronic acid additions, see:
    • 2a Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
    • 2b Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
    • 2c Darses S, Genet J.-P. Eur. J. Org. Chem. 2003; 22: 4313
    • 2d Harutyunyan SR, den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
    • 2e Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 19: 3221
    • 2f Alexakis A, Bäckvall JE, Krause N, Pamies O, Dieguez M. Chem. Rev. 2008; 108: 2796

      For selected palladium-catalyzed 1,4-boronic acid additions, see:
    • 3a Nishikata T, Yamamoto Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 2768
    • 3b Nishikata T, Yamamoto Y, Gridnev ID, Miyarau N. Organometallics 2005; 24: 5025
    • 3c Nishikata T, Yamamoto Y, Miyaura N. Chem. Lett. 2005; 34: 720
    • 3d Nishikata T, Yamamoto Y, Miyaura N. Chem. Lett. 2007; 36: 1442
    • 3e Nishikata T, Yamamoto Y, Miyaura N. Tetrahedron. Lett. 2007; 48: 4007
    • 3f Nishikata T, Yamamoto Y, Miyaura N. Adv. Synth. Catal. 2007; 349: 1759
    • 3g Gini F, Hessen B, Minnaard A. Org. Lett. 2005; 7: 5309
    • 3h Gottumukkala AL, Matcha K, Lutz M, de Vries JG, Minnaard A. Chem. Eur. J. 2012; 18: 6907
    • 3i Kikushima K, Holder JC, Gatti M, Stoltz BM. J. Am. Chem. Soc. 2011; 133: 6902
    • 3j Holder JC, Marziale AN, Gatti M, Mao B, Stoltz BM. Chem. Eur. J. 2013; 19: 74
    • 3k Holder JC, Goodman ED, Kikushima K, Gatti M, Marziale AN, Stoltz BM. Tetrahedron 2014; 71: 5781
    • 3l Jiang C, Lu Y, Hayashi T. Angew. Chem. Int. Ed. 2014; 53: 9936
    • 3m Liu G, Lu X. J. Am. Chem. Soc. 2006; 128: 16504
    • 3n Song J, Shen Q, Xu F, Lu X. Org. Lett. 2007; 9: 2947
    • 3o Zhou F, Yang M, Lu X. Org. Lett. 2009; 11: 1405
    • 3p Dai H, Yang M, Lu X. Adv. Synth. Catal. 2008; 350: 249
    • 3q Dai H, Lu X. Tetrahedron. Lett. 2009; 50: 3478
    • 3r Tao Z, Shi M. Chem. Eur. J. 2008; 14: 3759
    • 3s Ma GN, Zhang T, Shi M. Org. Lett. 2009; 11: 875
    • 3t Liu Z, Shi M. Tetrahedron 2010; 66: 2619
    • 3u Zhang T, Xu Q, Zhang R, Zhang T, Shi M. J. Org. Chem. 2010; 75: 3935
    • 3v Wang F, Chen F, Qu M, Li T, Liu Y, Shi M. Chem. Commun. 2013; 49: 3360
    • 3w Gu P, Xu Q, Shi M. Organometallics 2013; 32: 7575
    • 3x Chen J, Lu X, Lou W, Ye Y, Jiang H, Zeng W. J. Org. Chem. 2012; 77: 8541
    • 3y Yang G, Zhang W. Angew. Chem. Int. Ed. 2013; 52: 7540
    • 3z Quan M, Yang G, Xie F, Gridnev ID, Zhang W. Org. Chem. Front. 2015; 2: 398
    • 4a Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
    • 4b Thaler T, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 645
    • 4c Tissot M, Poggiali D, Hénon H, Müller D, Guénée L, Mauduit M, Alexakis A. Chem. Eur. J. 2012; 18: 8731
    • 5a Fillion E, Wilsily A, Liao ET. Tetrahedron: Asymmetry 2006; 17: 2957
    • 5b den Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2008; 47: 398
    • 5c den Hartog T, van Dijken DJ, Minnaard AJ, Feringa BL. Tetrahedron: Asymmetry 2010; 21: 1574
    • 5d Tissot M, Muller D, Belot S, Alexakis A. Org. Lett. 2010; 12: 2770
    • 5e Wencel-Delord J, Alexakis A, Crevisy C, Mauduit M. Org. Lett. 2010; 12: 4335
    • 6a Nishimura T, Yasuhara Y, Sawano T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 7872
    • 6b Nishimura T, Noishiki A, Hayashi T. Chem. Commun. 2012; 48: 973
    • 6c Nishimura T, Yasuhara Y, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 5164
  • 7 Ma Z, Xie F, Yu H, Zhang Y, Wu X, Zhang W. Chem. Commun. 2013; 49: 5292
    • 8a Wong J, Gan K, Chen HJ, Pullarkat SA. Adv. Synth. Catal. 2014; 356: 3391
    • 8b Gan K, Sadeer A, Chang X, Li Y, Pullarkat SA. Organometallics 2014; 33: 5074
    • 9a He P, Lu Y, Dong C.-G, Hu Q.-S. Org. Lett. 2007; 9: 343
    • 9b Bedfore RB, Betham M, Charmant JP. H, Haddow MF, Orpen AG, Pilarski LT, Coles SJ, Hursthouse MB. Organometallics 2007; 26: 6346
  • 10 Pullarkat SA, Leung PH. Top. Organomet. Chem. 2012; 43: 145
  • 11 Roscales S, Rincón Á, Buxaderas E, Csákÿ AG. Tetrahedron Lett. 2012; 53: 4721
  • 12 See Supporting Information.
  • 13 Synthesis of Compound 3 Arylboronic acid (0.5 mmol, 5 equiv) and α,β,γ,δ-unsaturated ketone (0.1 mmol, 1 equiv) were added to a solution of catalyst (0.015 mmol, 3 mol%) in toluene (0.5 mL). K3PO4 (0.1 mmol, 1 equiv) was subsequently added, and the solution left to stir for 48 h. The crude adduct was then purified via silica gel chromatography (n-hexanes–EtOAc = 10:1 or n-hexanes–CH2Cl2 = 1:1). (R)-1,3,5-Triphenylpent-4-en-1-one (3a) Light yellow oil. 1H NMR (300 MHz, CDCl3): δ = 3.51 (m, 2 H, CH2), 4.31 (m, 1 H, CHAr), 6.40 (m, 2 H), 7.18–7.56 (m, 13 H), 7.94 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 44.0, 44.6, 126.3, 126.7, 127.3, 127.8, 128.1, 128.5, 128.7, 128.7, 130.1, 132.7, 133.1, 137.2, 137.2, 143.4, 198.2. ESI-HRMS: m/z calcd for C23H21O [M + H]+: 313.1592; found: 313.1591. [α]D 3.01 (c 0.7, CHCl3). The er were determined via HPLC using a chiral column (Daicel Chiralpak IC), n-hexanes–i-PrOH = 98:2, 0.5 mL/min, 254 nm: t R (major) = 22.1 min; t R (minor) = 25.3 min. (+)-3,5-Diphenyl-1-(p-tolyl)pent-4-en-1-one (3e) Light yellow oil. 1H NMR (500 MHz, CDCl3): δ = 2.39 (s, 3 H, ArMe), 3.46 (m, 2 H, CH2), 4.29 (m, 1 H, CHAr), 6.39 (m, 2 H), 7.16–7.31 (m, 12 H), 7.84 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 44.0, 44.4, 126.3, 126.6, 127.2, 127.8, 127.9, 128.3, 128.5, 128.5, 128.7, 129.3, 130.0, 132.7, 134.7, 137.3, 143.4, 143.9, 197.8. ESI-HRMS: m/z calcd for C24H23O [M + H]+: 327.1749; found: 327.1744. [α]D 0.8 (c 0.4, CH2Cl2). The er were determined via HPLC using a chiral column (Daicel Chiralpak IC), n-hexanes–i-PrOH = 98:2, 0.5 mL/min, 280 nm: t R (major) = 21.4 min; t R (minor) = 23.2 min. (+)-1,5-Diphenyl-3-(p-tolyl)pent-4-en-1-one (3n) Light yellow oil. 1H NMR (400 MHz, CDCl3): δ = 2.31 (s, 3 H, ArMe), 3.47 (m, 2 H, CH2), 4.26 (m, 1 H, CHAr), 6.38 (m, 2 H), 7.10–7.56 (m, 12 H), 7.94 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.2, 43.7, 44.7, 126.2, 127.6, 128.1, 128.4, 128.6, 129.4, 132.8, 133.0, 136.2, 137.3, 140.3, 198.4. ESI-HRMS: m/z calcd for C24H23O [M + H]+: 327.1749; found: 327.1750. [α]D 5.2 (c 0.2, CH2Cl2). The er was determined via HPLC using a chiral column (Daicel Chiralpak IC), n-hexanes–i-PrOH = 99:1, 0.5 mL/min, 210 nm: t R (major) = 26.5 min (major); t R (minor) = 29.9 min.