Synlett 2015; 26(19): 2679-2684
DOI: 10.1055/s-0035-1560511
letter
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Catalysis in the Enantioselective Synthesis of α-Methylidene-δ-lactones

Anna Albrecht, Anna Skrzyńska, Artur Przydacz, Łukasz Albrecht*
  • Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland   Email: lukasz.albrecht@p.lodz.pl
Further Information

Publication History

Received: 07 September 2015

Accepted after revision: 05 October 2015

Publication Date:
06 November 2015 (eFirst)

Abstract

A new method for the preparation of optically active ­α-methyl­idene-δ-lactones is presented. The developed strategy utilizes an intramolecular Rauhut–Currier reaction for a facile construction of the α-methylidene-δ-lactone framework. The reaction is catalyzed by a chiral phosphine and employs the principles of nucleophilic catalysis. It benefits from operational simplicity and uses readily available starting materials.

Supporting Information

 
  • References and Notes


    • For seminal reports, see:
    • 1a List B, Lerner RA, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395
    • 1b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243

    • For selected reviews, see:
    • 1c List B. Chem. Commun. 2006; 819
    • 1d Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 1e Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 1f Mukherjee S, Yang J.-W, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1g Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138

      For selected reviews, see:
    • 2a Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 2b Marinetti A, Voituriez A. Synlett 2010; 174

      For a seminal report, see:
    • 3a Rauhut MM, Currier H. US 307499919630122, 1963 ; Chem. Abstr. 1963, 58, 11224a

    • For reviews on the Rauhut–Currier reaction, see:
    • 3b Xie P, Huang Y. Eur. J. Org. Chem. 2013; 6213
    • 3c Aroyan CE, Dermenci A, Miller SJ. Tetrahedron 2009; 65: 4069

      For selected examples, see:
    • 4a Erguden JK, Moore HW. Org. Lett. 1999; 1: 375
    • 4b Frank SA, Mergott DJ, Roush WR. J. Am. Chem. Soc. 2002; 124: 2404
    • 4c Wang L.-C, Luis AL, Agapiou K, Jang H.-Y, Krische MJ. J. Am. Chem. Soc. 2002; 124: 2402
    • 4d Aroyan CE, Miller SJ. J. Am. Chem. Soc. 2007; 129: 256
    • 4e Aroyan CE, Dermenci A, Miller SJ. J. Org. Chem. 2010; 75: 5784
    • 4f Gong J.-J, Li T.-Z, Pan K, Wu X.-Y. Chem. Commun. 2011; 47: 1491
    • 4g Takizawa S, Nguyen TM.-N, Grossmann A, Enders D, Sasai H. Angew. Chem. Int. Ed. 2012; 51: 5423
    • 4h Dong X, Liang L, Li E, Huang Y. Angew. Chem. Int. Ed. 2015; 54: 1621
    • 4i Su X, Zhou W, Li Y, Zhang J. Angew. Chem. Int. Ed. 2015; 54: 6874

      For examples, see:
    • 5a Kamat DP, Tilve SG, Kamat VP, Kirtany JK. Org. Prep. Proced. Int. 2015; 47: 1
    • 5b Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
    • 5c Murray RD. H. Nat. Prod. Rep. 1995; 12: 477
    • 5d Iinuma M, Tanaka T, Mizuno M, Katsuzaki T, Ogawa H. Chem. Pharm. Bull. 1989; 37: 1813
    • 5e Hsu FL, Nonaka G, Nishioka I. Chem. Pharm. Bull. 1985; 33: 3142
    • 6a Rea A, Tempone AG, Pinto EG, Mesquita JT, Rodrigues E, Grus L, Silva M, Sartorelli P, Lago JH. G. PLoS Neglected Trop. Dis. 2013; 7: 2556
    • 6b Asai F, Iinuma M, Tanaka T, Mizuno M. Phytochemistry 1991; 30: 3091
    • 6c Asai F, Iinuma M, Tanaka T, Mizuno M. Heterocycles 1992; 33: 229
    • 7a Iinuma M, Tanaka T, Mizuno M, Katsuzaki T, Ogawa H. Chem. Pharm. Bull. 1989; 37: 1813
    • 7b Hsu FL, Nonaka G.-I, Nishioka I. Chem. Pharm. Bull. 1985; 33: 3142
    • 7c Takechi M, Tanaka Y, Takehara M, Nonaka G.-I, Nishioka I. Phytochemistry 1985; 24: 2245

      For examples, see:
    • 8a Kamat DP, Tilve SG, Kamat VP, Kirtany JK. Org. Prep. Proced. Int. 2015; 47: 1
    • 8b Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
    • 8c Murray RD. H. Nat. Prod. Rep. 1995; 12: 477
    • 8d Iinuma M, Tanaka T, Mizuno M, Katsuzaki T, Ogawa H. Chem. Pharm. Bull. 1989; 37: 1813
    • 8e Hsu FL, Nonaka G, Nishioka I. Chem. Pharm. Bull. 1985; 33: 3142

      For selected enantioselective syntheses of 3,4-dihydrocoumarins, see, for example:
    • 9a Chen G, Tokunaga N, Hayashi T. Org. Lett. 2005; 7: 2285
    • 9b Dong C, Alper H. J. Org. Chem. 2004; 69: 5011
    • 9c Matsuda T, Shigeno M, Murakami M. J. Am. Chem. Soc. 2007; 129: 12086
    • 9d Kim H, Yun J. Adv. Synth. Catal. 2010; 352: 1881
    • 9e Gallagher BD, Taft BR, Lipshutz BH. Org. Lett. 2009; 11: 5374
    • 9f Kuang Y, Liu X, Chang L, Wang M, Lin L, Feng X. Org. Lett. 2011; 13: 3814
    • 9g Teichert JF, Feringa BL. Chem. Commun. 2011; 47: 2679
    • 9h Dong S, Liu X, Zhang Y, Lin L, Feng X. Org. Lett. 2011; 13: 5060
    • 9i Allen JC, Kociok-Köhn G, Frost CG. Org. Biomol. Chem. 2012; 10: 32
    • 9j Lee Y, Seo SW, Kim S. Adv. Synth. Catal. 2011; 353: 2671
    • 9k Engl OD, Fritz SP, Käslin A, Wennemers H. Org Lett. 2014; 16: 5454
    • 9l Tian L, Xu G.-Q, Li Y.-H, Liang Y.-M, Xu P.-F. Chem. Commun. 2014; 50: 2428
    • 9m Hu H, Liu Y, Guo J, Lin L, Xu Y, Liu X, Feng X. Chem. Commun. 2015; 51: 3835
  • 10 Albrecht Ł, Albrecht A, Janecki T In Natural Lactones and Lactams – Synthesis, Occurrence and Biological Activity . Janecki T. Wiley-VCH; Weinheim; 2013: 147
    • 11a Cane DE, Rossi T. Tetrahedron Lett. 1979; 20: 2973
    • 11b Nangia A, Prasuna G, Rao PB. Tetrahedron 1997; 53: 14507
    • 11c Kupchan SM, Hemingway RJ, Werner D, Karim A, McPhail AT, Sim GA. J. Am. Chem. Soc. 1968; 90: 3596

      For selected examples, see:
    • 12a Albrecht Ł, Wojciechowski J, Albrecht A, Wolf WM, Janecka A, Studzian K, Krajewska U, Różalski M, Janecki T, Krawczyk H. Eur. J. Med. Chem. 2010; 45: 710
    • 12b Modranka J, Albrecht A, Jakubowski R, Krawczyk H, Różalski M, Krajewska U, Janecka A, Wyrębska A, Różalska B, Janecki T. Bioorg. Med. Chem. 2012; 20: 5017
    • 12c Wyrębska A, Gach K, Lewandowska U, Szewczyk K, Hrabec E, Modranka J, Jakubowski R, Janecki T, Szymański J, Janecka A. Basic Clin. Pharmacol. Toxicol. 2013; 113: 391
    • 12d Wyrębska A, Pawłowska Z, Gach K, Komorowski P, Protas A, Walkowiak B, Janecka A. Chem. Biol. Drug. Des. 2014; 84: 300

      For a review concerning the synthesis of α-methylidene-δ-lactones, see:
    • 13a Albrecht A, Albrecht Ł, Janecki T. Eur. J. Org. Chem. 2011; 15: 2747

    • For recent syntheses of racemic α-methylidene-δ-lactones containing a 3,4-dihydrocoumarin framework, see:
    • 13b Krawczyk H, Albrecht Ł, Wojciechowski J, Wolf WM. Tetrahedron 2007; 63: 12583
    • 13c Janecki T, Wąsek T. Tetrahedron 2004; 60: 1049
    • 13d Modranka J, Albrecht A, Janecki T. Synlett 2010; 2867

      For the enantioselective syntheses, see:
    • 14a Albrecht Ł, Richter B, Krawczyk H, Jørgensen KA. J. Org. Chem. 2008; 73: 8337
    • 14b Albrecht Ł, Deredas D, Wojciechowski J, Wolf WM, Krawczyk H. Synthesis 2012; 247
    • 14c Albrecht A, Morana F, Fraile A, Jørgensen KA. Chem. Eur. J. 2012; 18: 10348
    • 14d Lee SY, Fujiwara Y, Nishiguchi A, Kałek M, Fu GC. J. Am. Chem. Soc. 2015; 137: 4587
  • 15 During our work on the enantioselective synthesis of α-methylidene-δ-lactones via the intramolecular Rauhut–Currier reaction a similar contribution appeared in the literature: Scanes RJ. H, Grossmann O, Grossmann A, Spring DR. Org. Lett. 2015; 17: 2462
  • 16 Representative Procedure An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding acrylate 1 (0.15 mmol), the catalyst 3c (0.03 mmol), and CH2Cl2 (0.6 mL). The reaction mixture was stirred at –25 °C and monitored by 1H NMR spectroscopy. When the signals of the starting acrylate 1 were no longer observed in the spectra of a crude reaction mixture it was directly subjected to flash chromatography on a silica gel to afford a target product 2. Following the general procedure, 2a was isolated by flash chromatography on silica (CH2Cl2–MeOH, 99:1) in 80% yield after 4 d as an amorphous white solid. 1H NMR (700 MHz, CDCl3): δ = 7.87–7.84 (m, 2 H), 7.57–7.53 (m, 1 H), 7.45–7.41 (m, 2 H), 7.30–7.28 (m, 1 H), 7.27–7.24 (m, 1 H), 7.12–7.07 (m, 2 H), 6.40 (s, 1 H), 5.92 (s, 1 H), 4.54 (t, J = 6.6 Hz, 1 H), 3.44 (dd, J = 17.4, 7.2 Hz, 1 H), 3.30 (dd, J = 17.4, 6.1 Hz, 1 H).13C NMR (176 MHz, CDCl3): δ = 196.3, 163.2, 150.6, 136.5, 135.8, 133.5, 129.8, 128.7 (2C), 128.7, 128.1 (2 C), 128.0, 125.2, 124.9, 117.3, 46.0, 38.2. HRMS: m/z calcd for [C18H14O3 + H]+: 279.1016; found: 279.1010. The er was determined by HPLC using a Chiralpak IA column (hexane–i-PrOH = 90:10); flow rate 1.0 mL/min; t R (major) = 16.0 min, t R (minor) = 14.4 min (89:11 er). [α]D 20 76.2 (c 0.5, CHCl3).
  • 17 For 2b: [α]D 20 76.2 (c 0.5, CHCl3); lit.15 [α]D 20 138.0 (c 0.1, CHCl3).