Synthesis 2016; 48(16): 2603-2611
DOI: 10.1055/s-0035-1560435
special topic
© Georg Thieme Verlag Stuttgart · New York

Chiral Iminophosphorane Organocatalyzed Asymmetric Sulfenyl­ation of 3-Substituted Oxindoles: Substrate-Interrelated Enantio­selectivities

Xing Gao
a  Key Laboratory of Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P. R. of China   Email: wanglimin@ecust.edu.cn
b  Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, P. R. of China   Email: jianweihan@sioc.ac.cn
,
Jianwei Han*
b  Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, P. R. of China   Email: jianweihan@sioc.ac.cn
,
Limin Wang*
a  Key Laboratory of Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, P. R. of China   Email: wanglimin@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 13 January 2016

Accepted after revision: 26 February 2016

Publication Date:
27 April 2016 (eFirst)

Dedicated to Prof. Dr. Dieter Enders on the occasion of his 70th birthday

Abstract

Catalytic asymmetric sulfenylation of 3-substituted oxindoles has been developed through efficient catalysis by tartaric acid derived chiral iminophosphoranes. With N-(phenylthio)phthalimide as the sulfur source, a wide range of optically active 3-phenylthiooxindoles were obtained in excellent yields (90–99%) and good enantiomeric excess (up to 90% ee). Interestingly, 3-aryl and 3-methyl substituted oxindoles afforded sulfenylated products in S-configuration, whereas substituted oxindoles with 3-arylidene or 3-isobutyl substituents gave the corresponding R-configured sulfenylated products.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
    • 1b Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748

    • For examples, see:
    • 1d Malinakova HC, Liebeskind LS. Org. Lett. 2000; 2: 4083
    • 1e Wearing XZ, Cook JM. Org. Lett. 2002; 4: 4237
    • 1f Albrecht BK, Williams RM. Org. Lett. 2003; 5: 197
    • 1g Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL. J. Am. Chem. Soc. 2008; 130: 2087
    • 1h Trost BM, Brennan MK. Synthesis 2009; 3003
    • 1i Zhou F, Liu YL, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 1j Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 1k Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
    • 2a Bui T, Candeias NR, Barbas III CF. J. Am. Chem. Soc. 2010; 132: 5574
    • 2b Liu YL, Wang BL, Cao JJ, Chen L, Zhang YX, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
    • 2c Zhang Z, Zheng W, Antilla JC. Angew. Chem. Int. Ed. 2011; 50: 1135
    • 2d Yang Y, Moinodeen F, Chin W, Ma T, Jiang ZY, Tan CH. Org. Lett. 2012; 14: 4762
    • 2e Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. J. Am. Chem. Soc. 2006; 128: 16488
    • 2f Sano D, Nagata K, Itoh T. Org. Lett. 2008; 10: 1593
    • 2g Liao YH, Wu ZJ, Han WY, Zhang XM, Yuan WC. Chem. Eur. J. 2012; 18: 8916
    • 3a Yang Z, Wang Z, Bai S, Shen K, Chen D, Liu X, Lin L, Feng X. Chem. Eur. J. 2010; 16: 6632
    • 3b Bui T, Hernández-Torres G, Milite C, Barbas III CF. Org. Lett. 2010; 12: 5696
    • 3c Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 1255
    • 3d Shen K, Liu X, Wang G, Lin L, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
    • 3e Bui T, Borregan M, Barbas III CF. J. Org. Chem. 2009; 74: 8935
    • 3f Zhang T, Cheng L, Liu L, Wang D, Chen YJ. Tetrahedron: Asymmetry 2010; 21: 2800
    • 3g Companyo X, Valero G, Pineda O, Calvet T, Font-Bard M, Moyano A, Rios R. Org. Biomol. Chem. 2012; 10: 431
    • 3h Cheng L, Liu L, Wang D, Chen YJ. Org. Lett. 2009; 11: 3874
    • 3i Zhou F, Ding M, Liu YL, Wang CH, Ji CB, Zhang YY, Zhou J. Adv. Synth. Catal. 2011; 353: 2945
    • 3j Jia LN, Huang J, Peng L, Wang LL, Bai JF, Tian F, He GY, Xu XY, Wang LX. Org. Biomol. Chem. 2012; 10: 236
    • 3k Qian ZQ, Zhou F, Du TP, Wang BL, Ding M, Zhao XL, Zhou J. Chem. Commun. 2009; 6753
    • 4a Deng QH, Wadepohl H, Gade LH. Chem. Eur. J. 2011; 17: 14922
    • 4b Wu L, Falivene L, Drinkel E, Grant S, Linden A, Cavallo L, Dorta R. Angew. Chem. Int. Ed. 2012; 51: 2870
    • 4c Gu X, Zhang Y, Xu Z.-J, Che C.-M. Chem. Commun. 2014; 50: 7870
    • 4d Li J, Cai Y, Chen W, Liu X, Lin L, Feng X. J. Org. Chem. 2012; 77: 9148
    • 4e Shibata N, Suzuki E, Asahi T, Shiro M. J. Am. Chem. Soc. 2001; 123: 7001
    • 4f Shibata N, Ishimaru T, Nakamura S, Toru T. J. Fluorine Chem. 2007; 128: 469
    • 4g Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
    • 4h Zhang Y, Yang XJ, Xie T, Chen GL, Zhu WH, Zhang XQ, Yang XY, Wu XY, He XP, He HM. Tetrahedron 2013; 69: 4933
    • 4i Wang FJ, Li JL, Hu QY, Yang XJ, Wu XY, He HM. Eur. J. Org. Chem. 2014; 3607
    • 4j Zhang R, Wang D, Xu Q, Jiang JJ, Shi M. Chin. J. Chem. 2012; 30: 1295
    • 5a Zheng W, Zhang Z, Kaplan MJ, Antilla JC. J. Am. Chem. Soc. 2011; 133: 3339
    • 5b Zhao MX, Zhang ZW, Chen MX, Tang WH, Shi M. Eur. J. Org. Chem. 2011; 3001
    • 5c Wang D, Jiang JJ, Zhang R, Shi M. Tetrahedron: Asymmetry 2011; 22: 1133
    • 5d Shibata N, Kohno J, Takai K, Ishimaru T, Nakamura S, Toru T, Kanemasa S. Angew. Chem. Int. Ed. 2005; 44: 4204
    • 5e Gao X, Han JW, Wang LM. Org. Lett. 2015; 17: 4596
    • 6a Cai Y, Li J, Chen W, Xie M, Liu X, Lin L, Feng X. Org. Lett. 2012; 14: 2726
    • 6b Wang C, Yang X, Loh CC. J, Raabe G, Enders D. Chem. Eur. J. 2012; 18: 11531
    • 6c Li X, Liu C, Xue X.-S, Cheng J.-P. Org. Lett. 2012; 14: 4374
    • 6d Han Z, Chen W, Dong S, Yang C, Liu H, Pan Y, Yan L, Jiang Z. Org. Lett. 2012; 14: 4670
    • 6e You Y, Wu ZJ, Wang ZH, Xu XY, Zhang XM, Yuan WC. J. Org. Chem. 2015; 80: 8470
    • 6f Huang LS, Li JT, Zhao Y, Ye XY, Liu Y, Yan L, Tan CH, Liu HJ, Jiang ZY. J. Org. Chem. 2015; 80: 8933
    • 6g For a recent review, see: Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
    • 7a Mehta RG, Liu J, Constantinou A, Hawthorne M, Pezzuto JM, Moon RC, Moriarty RM. Anticancer Res. 1994; 14: 1209
    • 7b Pedras MS. C, Hossain M. Org. Biomol. Chem. 2006; 4: 2581
    • 7c Dandia A, Sati M, Arya K, Sharma R, Loupy A. Chem. Pharm. Bull. 2003; 51: 1137
    • 8a Hiroi K, Nishida M, Nakayama A, Nakazawa K, Fujii E, Sato S. Chem. Lett. 1979; 8: 969
    • 8b Yura T, Iwasawa N, Clark R, Mukaiyama T. Chem. Lett. 1986; 15: 1809
    • 8c Youn JH, Herrmann R, Ugi I. Synthesis 1987; 159
    • 8d Poli G. J. Org. Chem. 1993; 58: 3165
    • 8e Enders D, Schäfer T, Piva O, Zamponi A. Tetrahedron 1994; 50: 3349
    • 8f Enders D, Zamponi A, Schäfer T, Nübling C, Eichenauer H, Demir AS, Raabe G. Chem. Ber. 1994; 127: 1707
    • 8g Chibale K, Warren S. Tetrahedron Lett. 1994; 35: 3991
    • 8h Enders D, Schäer T, Mies W. Tetrahedron 1998; 54: 10239
    • 8i Evans DA, Cempos KR, Tedrow JS, Michael FE, Gagn MR. J. Am. Chem. Soc. 2000; 122: 7905
    • 8j Ohata K, Terashima S. Tetrahedron Lett. 2006; 47: 2787
  • 9 Shirakawa S, Kasai A, Tokuda T, Maruoka K. Chem. Sci. 2013; 4: 2248
    • 10a Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
    • 10b Rajeswaran WG, Cohen LA. Tetrahedron 1998; 54: 11375
    • 10c Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. J. Am. Chem. Soc. 2006; 128: 16488