Synthesis 2016; 48(01): 31-42
DOI: 10.1055/s-0035-1560363
feature
© Georg Thieme Verlag Stuttgart · New York

Green Oxidation of Amines to Imines Based on the Development of Novel Catalytic Systems Using Molecular Oxygen or Hydrogen Peroxide

Kuniaki Marui
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
,
Akihiro Nomoto
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
,
Haruo Akashi
b   Research Institute of Natural Sciences, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan   Email: akashi@rins.ous.ac.jp
,
Akiya Ogawa*
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan   Email: ogawa@chem.osakafu-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 10 October 2015

Accepted: 14 October 2015

Publication Date:
04 November 2015 (online)


Abstract

Amines are transformed into the corresponding imines by environmentally benign catalytic oxidation reactions. Gaseous oxygen or hydrogen peroxide is used as the oxidant, and water is the only byproduct. When a vanadium complex is used as the catalyst in an ionic liquid, the amine oxidation successfully proceeds with recycling of the catalyst. Amine oxidation with hydrogen peroxide as an oxidant in water is also attained by using copper(II) sulfate as catalyst. In addition, photoinduced oxidation of amines to imines is conducted by using oxygen as the oxidant in the presence of a zinc–chlorin complex as catalyst.

 
  • References

    • 1a Thayer AM. Chem. Eng. News 1992; 70 (10): 27
    • 1b Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y. Chem. Soc. Rev. 2014; 43: 3480
    • 2a Buchner W, Schliebs R, Winter G, Buchel KH. Industrielle Anorganische Chemie. 2nd ed. VCH; Weinheim: 1986
    • 2b Delaude L, Laszlo P. J. Org. Chem. 1996; 61: 6360
    • 3a Noyori R, Aoki M, Sato K. Chem. Commun. 2003; 1977
    • 3b Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 3c Shi Z, Zhang C, Tanga C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 3d Gunasekaran N. Adv. Synth. Catal. 2015; 357: 1990
    • 4a Shimizu S, Shimada N, Sasaki Y. Green Chem. 2006; 8: 608
    • 4b Shaughnessy KH. Chem. Rev. 2009; 109: 643
    • 4c Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 4d Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 4e Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 5a Mahyari M, Shaabani A, Behbahani M, Bagheri A. Appl. Organomet. Chem. 2014; 28: 576
    • 5b Mahyari M, Shaabani A. Appl. Catal., A 2014; 469: 524
    • 5c Nabid MR, Bide Y, Aghaghafari E, Rezaei SJ. T. Catal. Lett. 2014; 144: 355
    • 5d Jawale DV, Gravel E, Villemin E, Shah N, Geertsen V, Namboothiri IN. N, Doris E. Chem. Commun. 2014; 50: 15251
    • 5e Ito Y, Ohta H, Yamada YM. A, Enoki T, Uozumi Y. Tetrahedron 2014; 70: 6146
    • 5f Li Y, Gao Y, Yang C. Chem. Commun. 2015; 51: 7721
    • 5g Huang Z, Li F, Chen B, Yuan G. Green Chem. 2015; 17: 2325
    • 6a Kodama S, Hashidate S, Nomoto A, Yano S, Ueshima M, Ogawa A. Chem. Lett. 2011; 40: 495
    • 6b Marui K, Higashiura Y, Kodama S, Hashidate S, Nomoto A, Yano S, Ueshima M, Ogawa A. Tetrahedron 2014; 70: 2431
    • 7a Murahashi S.-I. Angew. Chem. Int. Ed. 1995; 34: 2443
    • 7b Bloch R. Chem. Rev. 1998; 98: 1407
    • 7c Adams JP. J. Chem. Soc., Perkin Trans. 1 2000; 125
    • 7d Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 7e Largeron M. Eur. J. Org. Chem. 2013; 5225
    • 7f Kataja AO, Masson G. Tetrahedron 2014; 70: 8783
    • 8a Samec JS. M, Éll AH, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 2327
    • 8b Murahashi S.-I, Okano Y, Sato H, Nakae T, Komiya N. Synlett 2007; 1675
    • 8c Landge SM, Atanassova V, Thimmaiah M, Török B. Tetrahedron Lett. 2007; 48: 5161
    • 8d Largeron M, Chiaroni A, Fleury M.-B. Chem. Eur. J. 2008; 14: 996
    • 8e Zhu B, Lazar M, Trewyna BG, Angelici RJ. J. Catal. 2008; 260: 1
    • 8f Gnanaprakasam B, Zhang J, Milstein D. Angew. Chem. Int. Ed. 2010; 49: 1468
    • 8g Kegnæs S, Mielby J, Mentzel UV, Christensen CH, Riisager A. Green Chem. 2010; 12: 1437
    • 8h Huang H, Huang J, Liu YM, He HY, Cao Y, Fan KN. Green Chem. 2012; 14: 930
    • 8i Zhang Z, Wang F, Wang M, Xu S, Chen H, Zhang C, Xu J. Green Chem. 2014; 16: 2523
    • 8j Chen B, Li J, Dai W, Wang L, Gao S. Green Chem. 2014; 16: 3328
    • 8k Wendlandt AE, Stahl SS. Org. Lett. 2012; 14: 2850
    • 8l Zhang E, Tian H, Xu S, Yu X, Xu Q. Org. Lett. 2013; 15: 2704
    • 8m Han L, Xing P, Jiang B. Org. Lett. 2014; 16: 3428
    • 8n Qin Y, Zhang L, Lv J, Luo S, Cheng J.-P. Org. Lett. 2015; 17: 1469
    • 8o Wendlandt AE, Stahl SS. J. Am. Chem. Soc. 2014; 136: 506
    • 8p Tayade KN, Mishra M. J. Mol. Catal. A: Chem. 2014; 382: 114
    • 8q Tanabe Y, Kuriyama S, Arashiba K, Nakajima K, Nishibayashi Y. Organometallics 2014; 33: 5295
    • 8r Chen B, Wang L, Dai W, Shang S, Lv Y, Gao S. ACS Catal. 2015; 5: 2788
    • 8s Biswas S, Dutta B, Mullick K, Kuo C.-H, Poyraz AS, Suib SL. ACS Catal. 2015; 5: 4394
    • 8t Galletti P, Funiciello F, Soldati R, Giacominia D. Adv. Synth. Catal. 2015; 357: 1840
    • 8u Rao BG, Sudarsanam P, Rangaswamy A, Reddy BM. Catal. Lett. 2015; 145: 1436
    • 8v Largeron M, Fleury M.-B. Chem. Eur. J. 2015; 21: 1
    • 9a Yamazaki S, Yamazaki Y. Bull. Chem. Soc. Jpn. 1990; 63: 301
    • 9b Kim JW, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2008; 47: 9249
  • 10 Ogawa A, Curran DP. J. Org. Chem. 1997; 62: 450
  • 11 Kodama S, Ueta Y, Yoshida J, Nomoto A, Yano S, Ueshima M, Ogawa A. Dalton Trans. 2009; 9708
  • 12 Nakai M, Obata M, Sekiguchi F, Kato M, Shiro M, Ichimura A, Kinoshita I, Mikuriya M, Inohara T, Kawabe K, Sakurai H, Orvig C, Yano S. J. Inorg. Biochem. 2004; 98: 105
  • 13 Kodama S, Yoshida J, Nomoto A, Ueta Y, Yano S, Ueshima M, Ogawa A. Tetrahedron Lett. 2010; 51: 2450
  • 14 Monopoli A, Cotugno P, Iannone F, Ciminale F, Dell’Anna MM, Mastrorilli P, Nacci A. Eur. J. Org. Chem. 2014; 5925
    • 15a Brząszcz M, Kloc K, Młochowski J. Pol. J. Chem. 2003; 77: 1579
    • 15b Chu G, Li C. Org. Biomol. Chem. 2010; 8: 4716
    • 15c Wu X.-F, Petrosyan A, Ghochikyan TV, Saghyan AS, Langer P. Tetrahedron Lett. 2013; 54: 3158
  • 16 Marui K, Nomoto A, Ueshima M, Ogawa A. Tetrahedron Lett. 2015; 56: 1200
    • 17a Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 17b Minakata S, Ohshima Y, Takemiya A, Ryu I, Komatsu M, Ohshiro Y. Chem. Lett. 1997; 26: 311
    • 17c Maeda Y, Nishimura T, Uemura S. Bull. Chem. Soc. Jpn. 2003; 76: 2399
    • 17d Patila RD, Adimurthy S. Adv. Synth. Catal. 2011; 353: 1695
    • 17e Largeron M, Fleury M.-B. Angew. Chem. Int. Ed. 2012; 51: 5409
    • 17f Kang Q, Zhang Y. Green Chem. 2012; 14: 1016
    • 17g Hu Z, Kerton FM. Org. Biomol. Chem. 2012; 10: 1618
    • 17h Lan Y.-S, Liao B.-S, Liu Y.-H, Peng S.-M, Liu S.-T. Eur. J. Org. Chem. 2013; 5160
    • 17i Huang B, Tian H, Lin S, Xie M, Yu X, Xu Q. Tetrahedron Lett. 2013; 54: 2861
    • 17j Wang J, Lu S, Cao X, Gu H. Chem. Commun. 2014; 50: 5637
    • 17k Bai L, Dang Z. RSC Adv. 2015; 5: 10341
  • 18 Xiao T, Xiong S, Xie Y, Dong X, Zhou L. RSC Adv. 2013; 3: 15592
    • 19a Bailey AJ, James BR. Chem. Commun. 1996; 2343
    • 19b Yuan QL, Zhou XT, Ji HB. Catal. Commun. 2010; 12: 202
    • 19c Berlicka A, König B. Photochem. Photobiol. Sci. 2010; 9: 1359
    • 19d Zhou XT, Ren QG, Ji HB. Tetrahedron Lett. 2012; 53: 3369
    • 19e Zhao S, Liu C, Guo Y, Xiao JC, Chen QY. J. Org. Chem. 2014; 79: 8926
    • 19f Ushakov DB, Plutschack MB, Gilmore K, Seeberger PH. Chem. Eur. J. 2015; 21: 6528
    • 20a Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T. ACS Catal. 2011; 1: 1150
    • 20b Rueping M, Vila C, Szadkowska A, Koenigs RM, Fronert J. ACS Catal. 2012; 2: 2810
    • 20c Ko JH, Kang N, Park N, Shin H.-W, Kang S, Lee SM, Kim HJ, Ahn TK, Son SU. ACS Macro Lett. 2015; 4: 669
    • 20d Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Angew. Chem. Int. Ed. 2011; 50: 657
    • 20e Lang X, Ji H, Chen C, Ma W, Zhao J. Angew. Chem. Int. Ed. 2011; 50: 3934
    • 20f Suzuki K, Tang F, Kikukawa Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2014; 53: 5356
    • 20g Yang X.-J, Chen B, Li X.-B, Zheng L.-Q, Wu L.-Z, Tunga C.-H. Chem. Commun. 2014; 50: 6664
    • 20h Lang X, Ma W, Zhao Y, Chen C, Ji H, Zhao J. Chem. Eur. J. 2012; 18: 2624
    • 20i Huang L, Zhao J, Guo S, Zhang C, Ma J. J. Org. Chem. 2013; 78: 5627
    • 20j Park JH, Ko KC, Kim E, Park N, Ko JH, Ryu DH, Ahn TK, Lee JY, Son SU. Org. Lett. 2012; 14: 5502
    • 20k Jin J, Shin H.-W, Park JH, Park JH, Kim E, Ahn TK, Ryu DH, Son SU. Organometallics 2013; 32: 3954
    • 20l Ashen-Garry D, Selke M. Photochem. Photobiol. 2014; 90: 257
    • 20m Zavahir S, Zhu H. Molecules 2015; 20: 1941
    • 20n Ohtani B, Osaki H, Nishimoto S.-i, Kagiya T. Chem. Lett. 1985; 14: 1075
    • 20o Ho H.-A, Manna K, Sadow AD. Angew. Chem. Int. Ed. 2012; 51: 8607
    • 20p Li N, Lang X, Ma W, Ji H, Chen C, Zhao J. Chem. Commun. 2013; 49: 5034
    • 20q Naya S.-i, Kimura K, Tada H. ACS Catal. 2013; 3: 10
  • 21 Pereiro AB, Tojo E, Rodriguez A, Canosa J, Tojo J. Green Chem. 2006; 8: 307
    • 22a Rebelo SL. H, Simões MM. Q, Neves MG. P. M. S, Silva AM. S, Tagliatesta P, Cavaleiro JA. S. J. Mol. Catal. A: Chem. 2005; 232: 135
    • 22b Kumar A, Maji S, Dubey P, Abhilash GJ, Pandey S, Sarkar S. Tetrahedron Lett. 2007; 48: 7287
    • 22c Hirohara S, Obata M, Alitomo H, Sharyo K, Ando T, Yano S, Tanihara M. Bioconjugate Chem. 2009; 20: 944
    • 22d de Souza JM, de Assis FF, Carvalho CM. B, Cavaleiro JA. S, Brocksom TJ, de Oliveira KT. Tetrahedron Lett. 2014; 55: 1491