Synthesis 2015; 47(22): 3435-3450
DOI: 10.1055/s-0035-1560345
review
© Georg Thieme Verlag Stuttgart · New York

The Achmatowicz Rearrangement – Oxidative Ring Expansion of Furfuryl Alcohols

Jan Deska*
a  Department of Chemistry, Universität zu Köln, Greinstraße 4, 50939 Cologne, Germany
b  Department of Chemistry, Aalto-yliopisto, Kemistintie 1, 02150 Espoo, Finland   Email: jan.deska@aalto.fi
,
Daniel Thiel
a  Department of Chemistry, Universität zu Köln, Greinstraße 4, 50939 Cologne, Germany
,
Eleonora Gianolio
a  Department of Chemistry, Universität zu Köln, Greinstraße 4, 50939 Cologne, Germany
› Author Affiliations
Further Information

Publication History

Received: 22 June 2015

Accepted after revision: 10 August 2015

Publication Date:
28 September 2015 (eFirst)

Abstract

Over the years, the oxidative ring enlargement of furfuryl alcohols, known as the Achmatowicz reaction, has been developed into a powerful and versatile synthetic tool for the preparation of 6-hydroxypyranones. This review provides a comprehensive collection of the various ways to perform Achmatowicz rearrangement reactions and explores the role of this ring-expansion process in contemporary organic synthesis.

1 Introduction

2 Classical Methods and Variants

3 Single-Electron-Transfer Oxidations

4 Metal-Catalyzed Ring Expansions

5 Photolytic Oxygenations

6 Enzymatic Transformations

7 Conclusions

 
  • References

  • 1 Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles. 3rd ed. Wiley-VCH; Weinheim: 2012
  • 2 Alvarez-Builla J, Vaquero JJ, Barluengo J. Modern Heterocyclic Chemistry . 1st ed. Wiley-VCH; Weinheim: 2011
  • 3 Serrano-Riuz JC, Luque R, Sepúlveda-Escribano A. Chem. Soc. Rev. 2011; 40: 5266
  • 4 Tong X, Ma Y, Li Y. Appl. Catal., A 2010; 385: 1
  • 5 Georgiadis MP, Albizati KF, Georgiadis TM. Org. Prep. Proced. Int. 1992; 24: 95
  • 6 Very recently, a review on the related aza-Achmatowicz reaction appeared: van der Pijl F, van Delft FL, Rutjes FP. J. T. Eur. J. Org. Chem. 2015; 4811
  • 7 Clauson-Kaas N. Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 1947; 6
  • 8 Clauson-Kaas N, Limborg F, Fakstorp J. Acta Chem. Scand. 1948; 2: 109
  • 9 Cavill GW. K, Laing DG, Williams PJ. Aust. J. Chem. 1969; 22: 2145
  • 10 Achmatowicz Jr O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973
  • 11 Achmatowicz O, Bielski R. Carbohydr. Res. 1977; 55: 165
  • 12 Achmatowicz O, Grynkiewicz G, Szechner B. Tetrahedron 1976; 32: 1051
  • 13 Drueckhammer DG, Barbas III CF, Nozaki K, Wong C.-H, Wood CY, Ciufolini MA. J. Org. Chem. 1988; 53: 1607
  • 14 Hauser FM, Ellenberger SR, Ellenberger WP. Tetrahedron Lett. 1988; 29: 4939
  • 15 Martin SF, Gluchowski C, Campbell CL, Chapman RC. Tetrahedron 1988; 44: 3171
  • 16 Martin SF, Guinn DE. Tetrahedron Lett. 1984; 25: 5607
  • 17 Martin SF, Guinn DE. J. Org. Chem. 1987; 52: 5588
  • 18 Mori K, Kikuchi H. Liebigs Ann. Chem. 1989; 963
  • 19 Weeks PD, Brennan TM, Brannegan DP, Kuhla DE, Elliott ML, Watson HA, Wlodecki B, Breitenbach R. J. Org. Chem. 1980; 45: 1109
  • 20 Harada R, Iwasaki M. Agric. Biol. Chem. 1983; 47: 2921
  • 21 Raczko J, Gołębowski A, Krajewski JW, Gluzinski P, Jurczak J. Tetrahedron Lett. 1990; 31: 3797
  • 22 Ramza J, Zamojski A. Carbohydr. Res. 1992; 228: 205
  • 23 Llera J.-M, Trujillo M, Blanco M.-E, Alcudia F. Tetrahedron: Asymmetry 1994; 5: 709
  • 24 Ramza J, Zamojski A. Tetrahedron Lett. 1992; 48: 6123
  • 25 Martin SF, Dodge JA, Burgess LE, Hartmann M. J. Org. Chem. 1992; 57: 1070
  • 26 Martin SF, Dodge JA, Burgess LE, Limberakis C, Hartmann M. Tetrahedron 1996; 52: 3229
  • 27 Martin SF, Lee W.-C, Pacofsky GJ, Gist RP, Mulhern TA. J. Am. Chem. Soc. 1994; 116: 4674
  • 28 Georgiadis MP, Couladouros EA. J. Org. Chem. 1986; 51: 2725
  • 29 Kametani T, Keino K, Kigawa M, Tsubuki M, Honda T. Tetrahedron Lett. 1989; 30: 3141
  • 30 Honda T, Keino K, Tsubuki M. J. Chem. Soc., Chem. Commun. 1990; 650
  • 31 Tsubuki M, Kanai K, Keino K, Kakinuma N, Honda T. J. Org. Chem. 1992; 57: 2930
  • 32 Tsubuki M, Keino K, Honda T. J. Chem. Soc., Perkin Trans. 1 1992; 2643
  • 33 Balachari D, O’Doherty GA. Org. Lett. 2000; 2: 863
  • 34 Honda T, Tomitsuka K, Tsubuki M. J. Org. Chem. 1993; 58: 4279
  • 35 Arai Y, Masuda T, Yoneda S, Masaki Y, Shiro M. J. Org. Chem. 2000; 65: 258
  • 36 Tsubuki M, Okita H, Honda T. Synlett 1998; 1417
  • 37 Chan K.-F, Wong HN. C. Eur. J. Org. Chem. 2003; 82
  • 38 Burke MD, Berger EM, Schreiber SL. J. Am. Chem. Soc. 2004; 126: 14095
  • 39 Bechem B, Patman RL, Hashmi AS. K, Krische MJ. J. Org. Chem. 2010; 75: 1795
  • 40 Herrmann AT, Martinez SR, Zakarian A. Org. Lett. 2011; 13: 3636
  • 41 Cheng K, Kelly AR, Kohn RA, Dweck JF, Walsh PJ. Org. Lett. 2009; 11: 2703
  • 42 Ransborg LK, Lykke L, Hammer N, Næsborg L, Jørgensen KA. Chem. Commun. 2014; 50: 7604
  • 43 Lefebvre Y. Tetrahedron Lett. 1972; 2: 133
  • 44 Laliberté R, Médawar G, Lefebvre Y. J. Med. Chem. 1973; 16: 1084
  • 45 Georgiadis MP, Couladouros EA, Polissiou MG, Filippakis SE, Mentzafos D, Terzis A. J. Org. Chem. 1982; 47: 3054
  • 46 Hoffmann HM. R, Krumwiede D, Mucha B, Oehlerking HH, Prahst GW. Tetrahedron 1993; 49: 8999
  • 47 Chan K.-F, Wong HN. C. Org. Lett. 2001; 3: 3991
  • 48 Hobson SJ, Marquez R. Org. Biomol. Chem. 2006; 4: 3808
  • 49 Coombs TC, Lee MD, Wong H, Armstrong M, Cheng B, Chen W, Moretto AF, Liebeskind LS. J. Org. Chem. 2008; 73: 882
  • 50 Wiesner K, Tsai TY. R, Jäggi FJ, Tsai CS. J, Gray GD. Helv. Chim. Acta 1982; 65: 2049
  • 51 Kametani T, Tsubuki M, Higurashi K, Honda T. J. Org. Chem. 1986; 51: 2932
  • 52 Kametani T, Kigawa M, Tsubuki M, Honda T. J. Chem. Soc., Perkin Trans. 1 1988; 1503
  • 53 Honda T, Imai M, Keino K, Tsubuki M. J. Chem. Soc., Perkin Trans. 1 1990; 2677
  • 54 Lange U, Plitzko W, Blechert S. Tetrahedron 1995; 51: 5781
  • 55 Takeuchi M, Taniguchi T, Ogasawara K. Synthesis 1999; 341
  • 56 Ziegler FE, Wester RT. Tetrahedron Lett. 1984; 25: 617
  • 57 DeShong P, Lin M.-T, Perez JJ. Tetrahedron Lett. 1986; 27: 2091
  • 58 Mori K, Kisida H. Tetrahedron 1986; 42: 5281
  • 59 DeShong P, Simpson DM, Lin M.-T. Tetrahedron Lett. 1989; 30: 2885
  • 60 Paterson I, Lister MA, Ryan GR. Tetrahedron Lett. 1991; 32: 1749
  • 61 Shimshock SJ, Waltermire RE, DeShong P. J. Am. Chem. Soc. 1991; 113: 8791
  • 62 Shiratani T, Kimura K, Yoshihara K, Hatakeyama S, Irie H, Miyashita M. Chem. Commun. 1996; 21
  • 63 Taniguchi T, Nakamura K, Ogasawara K. Synthesis 1997; 509
  • 64 Bogaczyk S, Brescia M.-R, Shimshock YC, DeShong P. J. Org. Chem. 2001; 66: 4352
  • 65 Ren J, Liu Y, Song L, Tong R. Org. Lett. 2014; 16: 2986
  • 66 Adlington RM, Baldwin JE, Mayweg AV. W, Pritchard GJ. Org. Lett. 2002; 4: 3009
  • 67 Li Y, Nawrat CC, Pattenden G, Winne JM. Org. Biomol. Chem. 2009; 7: 639
  • 68 Rodier F, Parrain J.-L, Chouraqui G, Commeriras L. Org. Biomol. Chem. 2013; 11: 4178
  • 69 Nicolaou KC, Kang Q, Ng SY, Chen DY.-K. J. Am. Chem. Soc. 2010; 132: 8219
  • 70 Li Z, Leung T.-F, Tong R. Chem. Commun. 2014; 50: 10990
  • 71 Li Z, Ip FC. F, Ip NY, Tong R. Chem. Eur. J. 2015; 21: 11152
  • 72 Adam W, Bialas J, Hadjiarapoglou L, Sauter M. Chem. Ber. 1992; 125: 231
  • 73 Oishi S, Nelson SD. J. Org. Chem. 1992; 57: 2744
  • 74 Adger BM, Barrett C, Brennan J, McGuigan P, McKervey MA, Tarbit B. J. Chem. Soc., Perkin Trans. 1 1993; 1220
  • 75 Adger BM, Barrett C, Brennan J, McKervey MA, Murray RW. J. Chem. Soc., Perkin Trans. 1 1991; 1553
  • 76 Piancatelli G, Scettri A, D’Auria M. Tetrahedron Lett. 1977; 25: 2199
  • 77 Piancatelli G, Scettri A, D’Auria M. Tetrahedron Lett. 1979; 27: 1507
  • 78 Piancatelli G, Scettri A, D’Auria M. Tetrahedron 1980; 36: 661
  • 79 Antonioletti R, D’Auria M, De Mico A, Piancatelli G, Scettri A. Tetrahedron 1984; 40: 3805
  • 80 Annangudi SP, Sun M, Salomon RG. Synlett 2005; 1468
  • 81 Oishi T, Suzuki M, Watanabe K, Murata M. Tetrahedron Lett. 2006; 47: 3975
  • 82 Massa A, Siniscalchi FR, Bugatti V, Lattanzi A, Scettri A. Tetrahedron: Asymmetry 2002; 13: 1277
  • 83 Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Tetrahedron 2009; 65: 10797
  • 84 Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
  • 85 Tanaka H, Kobayashi Y, Torii S. J. Org. Chem. 1976; 41: 3482
  • 86 Yoshida K, Takeda K, Fueno T. J. Chem. Soc., Perkin Trans. 1 1991; 2817
  • 87 Limborg F, Clauson-Kaas N. Acta Chem. Scand. 1953; 7: 234
  • 88 Nedenskov P, Elming N, Nielsen JT, Clauson-Kaas N. Acta Chem. Scand. 1955; 9: 17
  • 89 Shono T, Matsumura Y. Tetrahedron Lett. 1976; 17: 1363
  • 90 De Mico A, Margarita R, Mariani A, Piancatelli G. Tetrahedron Lett. 1996; 37: 1889
  • 91 De Mico A, Margarita R, Mariani A, Piancatelli G. Chem. Commun. 1997; 1237
  • 92 De Mico A, Margarita R, Parlanti L, Piancatelli G, Vescovi A. Tetrahedron 1997; 53: 16877
  • 93 Bruno M, Margarita R, Parlanti L, Piancatelli G, Trifoni M. Tetrahedron Lett. 1998; 39: 3847
  • 94 De Mico A, Margarita R, Piancatelli G. Tetrahedron Lett. 1995; 36: 3553
  • 95 Sharpless KB, Michaelson RC. J. Am. Chem. Soc. 1973; 95: 6136
  • 96 Ho T.-L, Sapp SG. Synth. Commun. 1983; 13: 207
  • 97 Robertson J, North C, Sadig JE. R. Tetrahedron 2011; 67: 5011
  • 98 Ji Y, Benkovics T, Beutner GL, Sfouggatakis C, Eastgate MD, Blackmond DG. J. Org. Chem. 2015; 880: 1696
  • 99 Martin SF, Zinke PW. J. Org. Chem. 1991; 56: 6600
  • 100 Ghosh AK, Chen Z.-H. Org. Lett. 2013; 15: 5088
  • 101 Fürstner A, Nagano T. J. Am. Chem. Soc. 2007; 129: 1906
  • 102 Maier ME, Schöffling B. Tetrahedron Lett. 1991; 32: 53
  • 103 Henderson JA, Jackson KL, Phillips AJ. Org. Lett. 2007; 9: 5299
  • 104 Celanire S, Marlin F, Baldwin JE, Adlington RM. Tetrahedron 2005; 61: 3025
  • 105 Wender PA, Bi FC, Buschmann N, Gosselin F, Kan C, Kee J.-M, Ohmura H. Org. Lett. 2006; 8: 5373
  • 106 Kobayashi Y, Kusakabe M, Kitano Y, Sato F. J. Org. Chem. 1988; 53: 1587
  • 107 Kusakabe M, Kitano Y, Kobayashi Y, Sato F. J. Org. Chem. 1989; 54: 2085
  • 108 Honda T, Kametani T, Kanai K, Tatsuzaki Y, Tsubuki M. J. Chem. Soc., Perkin Trans. 1 1990; 1733
  • 109 Honda T, Kobayashi Y, Tsubuki M. Tetrahedron Lett. 1990; 31: 4891
  • 110 Honda T, Kobayashi Y, Tsubuki M. Tetrahedron 1993; 49: 1211
  • 111 Griggs ND, Phillips AJ. Org. Lett. 2008; 10: 4955
  • 112 Finlay J, McKervey MA, Gunaratne HQ. N. Tetrahedron Lett. 1998; 39: 5651
  • 113 Herrmann WA, Fischer RW, Marz DW. Angew. Chem., Int. Ed. Engl. 1991; 30: 1638; Angew. Chem. 1991, 103, 1706
  • 114 Wahlen J, Moens B, De Vos DE, Alsters PL, Jacobs PA. Adv. Synth. Catal. 2004; 346: 333
  • 115 Kumar P, Kumar R, Pandey B. Synlett 1995; 289
  • 116 Kumar P, Kumar PandeyR. Green Chem. 2000; 2: 29
  • 117 Schenck GO. Angew. Chem. 1944; 56: 101
  • 118 Foote CS, Wexler S. J. Am. Chem. Soc. 1964; 86: 3879
  • 119 Foote CS, Wexler S. J. Am. Chem. Soc. 1964; 86: 3880
  • 120 Foote CS, Wuesthoff MT, Wexler S, Burstain IG, Denny R, Schenck GO, Schulte-Elte K.-H. Tetrahedron 1967; 2583
  • 121 Feringa BL. Recl. Trav. Chim. Pays-Bas 1987; 106: 469
  • 122 Montagnon T, Tofi M, Vassilikogiannakis G. Acc. Chem. Res. 2008; 41: 1001
  • 123 Montagnon T, Kalaitzakis D, Triantafyllakis M, Stratakis M, Vassilikogiannakis G. Chem. Commun. 2014; 50: 15480
  • 124 Sammes PG, Street LJ. J. Chem. Soc., Chem. Commun. 1983; 666
  • 125 Sammes PG, Street LJ, Whitby RJ. J. Chem. Soc., Perkin Trans. 1 1986; 281
  • 126 Kuo Y.-H, Shih K.-S. Heterocycles 1990; 31: 1941
  • 127 Martin SF, Limberakis C, Burgess LE, Hartmann M. Tetrahedron 1999; 55: 3561
  • 128 Berberich SM, Cherney RJ, Colucci J, Courillon C, Geraci LS, Kirkland TA, Marx MA, Schneider MF, Martin SF. Tetrahedron 2003; 59: 6819
  • 129 Noutsias D, Kouridaki A, Vassilikogiannakis G. Org. Lett. 2011; 13: 1166
  • 130 Tofi M, Montagnon T, Georgiou T, Vassilikogiannakis G. Org. Biomol. Chem. 2007; 5: 772
  • 131 Magnus P, Bauta WE, Booth J, Bos ME, DeLuca M, Diorazio L, Donohoe JT, Frost C, Magnus N, Mendoza J, Pye P, Tarrant JG, Thom S, Ujjainwalla F. Tetrahedron 1996; 52: 14081
  • 132 Magnus P, Bauta WE, Booth J, Bos ME, DeLuca M, Diorazio L, Donohoe JT, Magnus N, Mendoza J, Pye P, Tarrant J, Thom S, Ujjainwalla F. Tetrahedron Lett. 1995; 36: 5327
  • 133 Williams DR, Benbow JW, Allen EE. Tetrahedron Lett. 1990; 31: 6769
  • 134 Williams DR, Benbow JW, McNutt JG, Allen EE. J. Org. Chem. 1995; 60: 833
  • 135 Krishna UM. Tetrahedron Lett. 2010; 51: 2148
  • 136 Vassilikogiannakis G, Alexopoulou I, Tofi M, Montagnon T. Chem. Commun. 2011; 47: 259
  • 137 Noutsias D, Alexopoulou I, Montagnon T, Vassilikogiannakis G. Green Chem. 2012; 14: 601
  • 138 Vassilikogiannakis G, Stratakis M. Angew. Chem. Int. Ed. 2003; 42: 5465; Angew. Chem. 2003, 115, 5623
  • 139 Hugelshofer CL, Magauer T. Angew. Chem. Int. Ed. 2014; 53: 11351; Angew. Chem. 2014, 126, 11533
  • 140 Luo S.-H, Hugelshofer CL, Hua J, Jing S.-X, Li C.-H, Liu Y, Li X.-N, Zhao X, Magauer T, Li S.-H. Org. Lett. 2014; 16: 6416
  • 141 Roethle PA, Hernandez PT, Trauner D. Org. Lett. 2006; 8: 5901
  • 142 Wang SC, Tantillo DJ. J. Org. Chem. 2008; 73: 1516
  • 143 Stichnoth D, Kölle P, Kimbrough TJ, Riedle E, de Vivie-Riedle R, Trauner D. Nat. Commun. 2014; 5: 5597
  • 144 Khojasteh-Bakht SC, Chen W, Koenigs LL, Peter RM, Nelson SD. Drug Metabol. Dispos. 1999; 27: 574
  • 145 Alvarez-Diez TM, Zheng J. Drug Metabol. Dispos. 2004; 32: 1345
  • 146 Erve JC. L, Vashishtha SC, DeMaio W, Talaat RE. Drug Metabol. Dispos. 2007; 35: 908
  • 147 Taxak N, Kalra S, Bharatam PV. Inorg. Chem. 2013; 52: 13496
  • 148 Thiel D, Doknić D, Deska J. Nat. Commun. 2014; 5: 5278
  • 149 Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI. Appl. Biochem. Microbiol. 2007; 43: 523
  • 150 Asta C, Conrad J, Mika S, Beifuss U. Green Chem. 2011; 13: 3066
  • 151 Asta C, Schmidt D, Conrad J, Förster-Fromme B, Tolasch T, Beifuss U. RSC Adv. 2013; 3: 19259