Aktuelle Neurologie 2015; 42(08): 473-481
DOI: 10.1055/s-0035-1559619
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Genetik der epileptischen Enzephalopathien

Genetics of Epileptic Encephalopathies
S. Wolking
1   Neurologie mit Schwerpunkt Epileptologie, Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen
,
Y. G. Weber
1   Neurologie mit Schwerpunkt Epileptologie, Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
09 September 2015 (online)

Zusammenfassung

Epileptische Enzephalopathien sind durch einen Anfallsbeginn in den ersten Lebensjahren, einen therapierefraktären Verlauf sowie das Auftreten von psychomotorischen Entwicklungsstörungen gekennzeichnet. Zum Teil handelt es sich um wohl definierte elektroklinische Syndrome wie bspw. das West-Syndrom, das Dravet-Syndrom oder das Lennox-Gastaut-Syndrom, welche durch charakteristische EEG-Merkmale, Anfallstypen und Erkrankungsbeginn gekennzeichnet sind. Im klinischen Alltag ist jedoch eine eindeutige Zuordnung zu diesen spezifischen Syndromen in vielen Fällen nicht möglich. Diese „nicht-klassischen“ epileptischen Enzephalopathien zeigen häufig Überschneidungen zu den klassischen Syndromen jedoch auch distinkte Charakteristika. Neben strukturellen und metabolischen Ursachen konnten in den letzten Jahren zahlreiche neue Genveränderungen in Zusammenhang mit epileptischen Enzephalopathien nachgewiesen werden. Hierbei wird zunehmend die genetische Heterogenität dieser Erkrankungsgruppe deutlich. So verursachen verschiedene Gene gleichartige Krankheitsbilder und im Gegenzug können Veränderungen im gleichen Gen sehr unterschiedliche Phänotypen bedingen. Um dieser Tatsache auch im klinischen Alltag gerecht zu werden, bieten das next-generation sequencing und hierbei insbesondere die Gen-Panel-Diagnostik eine effektive und schnelle diagnostische Methode. Die Bedeutung der Sicherung der genetischen Diagnose liegt nicht nur in der Ersparnis weiterer, möglicherweise belastender Diagnostik, sie dient auch der genetischen und prognostischen Beratung und eröffnet zudem zunehmend spezifische Therapieoptionen. In dieser Übersichtsarbeit werden neue genetische Erkenntnisse der letzten Jahre auf dem Gebiet der epileptischen Enzephalopathien dargestellt – sowohl in Hinblick auf die klassischen Syndrome als auch die „nicht-klassischen“ Enzephalopathie-Formen.

Abstract

Epileptic encephalopathies are conditions characterized by seizure onset in the first years of life, pharmacoresistance and cognitive and behavioural deficits. They comprise well-defined electroclinical syndromes such as West syndrome, Dravet syndrome and Lennox-Gastaut syndrome that are defined by specific electroencephalographic findings, seizure types and age of onset. However, in clinical routine, assignment of cases to one of these defined syndromes is often not possible. These cases of ‘non-classical’ epileptic encephalopathy frequently show a certain overlap with the classical syndromes but display distinct features as well. Beside structural and metabolic causes, genetic changes constitute the main etiology of this disease group. In the last years, the genetic heterogeneity of these syndromes has become more and more evident. Thus, different genes may cause similar conditions and, vice versa, variants of the same gene may lead to widely differing phenotypes. Gene panel analyses, a next generation sequencing technique, provide a fast and efficient method to deal with this complex situation in clinical routine. Establishing a genetic diagnosis can prevent additional, possibly harmful or distressing diagnostic tests, allows genetic and prognostic counseling, and increasingly offers opportunities for targeted treatment. This review provides an overview of recent genetic discoveries in the field of genetic encephalopathies – with focus on classical as well as ‘non-classical’ forms.

 
  • Literatur

  • 1 Berg AT, Berkovic SF, Brodie MJ et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010; 51: 676-685
  • 2 Claes L, Del-Favero J, Ceulemans B et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of Infancy. Am J Hum Genet 2001; 68: 1327-1332
  • 3 Shi X, Yasumoto S, Nakagawa E et al. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev 2009; 31: 758-762
  • 4 Saitsu H, Kato M, Mizuguchi T et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008; 40: 782-788
  • 5 Weckhuysen S, Mandelstam S, Suls A et al. KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 2012; 71: 15-25
  • 6 Fehr S, Wilson M, Downs J et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet EJHG 2013; 21: 266-273
  • 7 Rauch A, Wieczorek D, Graf E et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012; 380: 1674-1682
  • 8 O’Roak BJ, Vives L, Girirajan S et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246-250
  • 9 Sanders SJ, Murtha MT, Gupta AR et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237-241
  • 10 Lemke JR, Riesch E, Scheurenbrand TS et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 2012; 53: 1387-1398
  • 11 Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 2012; 47: 317-323
  • 12 Yamatogi Y, Ohtahara S. Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev 2002; 24: 13-23
  • 13 Kato M, Das S, Petras K et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 2004; 23: 147-159
  • 14 Kitamura K, Yanazawa M, Sugiyama N et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 2002; 32: 359-369
  • 15 Gengyo-Ando K, Kitayama H, Mukaida M et al. A murine neural-specific homolog corrects cholinergic defects in Caenorhabditis elegans unc-18 mutants. J Neurosci Off J Soc Neurosci 1996; 16: 6695-6702
  • 16 Carvill GL, Weckhuysen S, McMahon JM et al. GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology 2014; 82: 1245-1253
  • 17 Bentley D, McVean G, Heavin S et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet 2014; 23: 3200-3211
  • 18 Kato M, Yamagata T, Kubota M et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 2013; 54: 1282-1287
  • 19 Biervert C, Schroeder BC, Kubisch C et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403-406
  • 20 Maljevic S, Wuttke TV, Lerche H. Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 2008; 586: 1791-1801
  • 21 Orhan G, Bock M, Schepers D et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy: KCNQ2 Defects in EE. Ann Neurol 2014; 75: 382-394
  • 22 Orhan G, Wuttke TV, Nies AT et al. Retigabine/Ezogabine, a KCNQ/K(V)7 channel opener: pharmacological and clinical data. Expert Opin Pharmacother 2012; 13: 1807-1816
  • 23 Guerrini R, Pellock JM. Age-related epileptic encephalopathies. Handb Clin Neurol 2012; 107: 179-193
  • 24 Riikonen R. Recent advances in the pharmacotherapy of infantile spasms. CNS Drugs 2014; 28: 279-290
  • 25 Strømme P, Mangelsdorf ME, Scheffer IE et al. Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain Dev 2002; 24: 266-268
  • 26 Kalscheuer VM, Tao J, Donnelly A et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet 2003; 72: 1401-1411
  • 27 Evans JC, Archer HL, Colley JP et al. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet EJHG 2005; 13: 1113-1120
  • 28 Dravet C, Guerrini R. Dravet syndrome. Montrouge: J. Libbey Eurotext; 2011
  • 29 Marini C, Scheffer IE, Nabbout R et al. The genetics of Dravet syndrome. Epilepsia 2011; 52 (Suppl. 02) 24-29
  • 30 Depienne C, Bouteiller D, Keren B et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 2009; 5: e1000381
  • 31 Harkin LA, Bowser DN, Dibbens LM et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002; 70: 530-536
  • 32 Guerrini R, Dravet C, Genton P et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39: 508-512
  • 33 Coppola G, Plouin P, Chiron C et al. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia 1995; 36: 1017-1024
  • 34 Carranza Rojo D, Hamiwka L, McMahon JM et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology 2011; 77: 380-383
  • 35 Freilich ER, Jones JM, Gaillard WDC et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch Neurol 2011; 68: 665-671
  • 36 Lemke JR, Lal D, Reinthaler EM et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45: 1067-1072
  • 37 Bourgeois BFD, Douglass LM, Sankar R. Lennox-Gastaut syndrome: A consensus approach to differential diagnosis. Epilepsia 2014; 55: 4-9
  • 38 Arzimanoglou A, French J, Blume WT et al. Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol 2009; 8: 82-93
  • 39 Allen AS, Berkovic SF, Cossette P et al. De novo mutations in epileptic encephalopathies. Nature 2013; 501: 217-221
  • 40 Tanaka M, Olsen RW, Medina MT et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008; 82: 1249-1261
  • 41 Wagstaff J, Knoll JH, Fleming J et al. Localization of the gene encoding the GABAA receptor beta 3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am J Hum Genet 1991; 49: 330-337
  • 42 Barcia G, Fleming MR, Deligniere A et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012; 44: 1255-1259
  • 43 Ishii A, Shioda M, Okumura A et al. A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene 2013; 531: 467-471
  • 44 Heron SE, Smith KR, Bahlo M et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 2012; 44: 1188-1190
  • 45 Milligan CJ, Li M, Gazina EV et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine: KCNT1 and Human Epilepsy. Ann Neurol 2014; 75: 581-590
  • 46 Bearden D, Strong A, Ehnot J et al. Targeted treatment of migrating partial seizures of infancy with quinidine: MPSI and Quinidine. Ann Neurol 2014; 76: 457-461
  • 47 Berkovic SF, Heron SE, Giordano L et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004; 55: 550-557
  • 48 Nakamura K, Kato M, Osaka H et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013; 81: 992-998
  • 49 Lemke JR, Hendrickx R, Geider K et al. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 2014; 75: 147-154
  • 50 Tifft CJ, Toro C, Boerkoel CF et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 2014; 1: 190-198
  • 51 Torkamani A, Bersell K, Jorge BS et al. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol 2014; 76: 529-540
  • 52 Boumil RM, Letts VA, Roberts MC et al. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet 2010; 6
  • 53 EuroEPINOMICS-RES Consortium, Epilepsy Phenome/Genome Project, Epi4K Consortium . De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 2014; 95: 360-370
  • 54 Deciphering Developmental Disorders Study . Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015; 519: 223-228
  • 55 Veeramah KR, O’Brien JE, Meisler MH et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90: 502-510
  • 56 Larsen J, Carvill GL, Gardella E et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015; 84: 480-489
  • 57 Gonzalez M, Züchner S, Palotie A et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 2015; 47: 393-399
  • 58 Pena SDJ, Coimbra RLM. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clin Genet 2015; 87: e1-e3
  • 59 Kerr PM, Clément-Chomienne O, Thorneloe KS et al. Heteromultimeric Kv1.2–Kv1.5 channels underlie 4-aminopyridine-sensitive delayed rectifier K( +) current of rabbit vascular myocytes. Circ Res 2001; 89: 1038-1044
  • 60 Kase D, Imoto K. The role of HCN channels on membrane excitability in the nervous system. J Signal Transduct 2012; 2012: 619747
  • 61 Nava C, Dalle C, Rastetter A et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 2014; 46: 640-645
  • 62 Carvill GL, Heavin SB, Yendle SC et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45: 825-830
  • 63 Thomas RH, Zhang LM, Carvill GL et al. CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology 2015; 84: 951-958
  • 64 Suls A, Jaehn JA, Kecskés A et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 2013; 93: 967-975
  • 65 Mefford HC, Eichler EE. Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 2009; 19: 196-204
  • 66 Sander T, Eichler EE, Scheffer IE et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 2009; 18: 3626-3631
  • 67 Helbig I, Mefford HC, Sharp AJ et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41: 160-162
  • 68 De Kovel CGF, Trucks H, Helbig I et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010; 133: 23-32
  • 69 Mullen SA, Carvill GL, Bellows S et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013; 81: 1507-1514
  • 70 Mefford HC, Yendle SC, Hsu C et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011; 70: 974-985
  • 71 Paciorkowski AR, Thio LL, Rosenfeld JA et al. Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur J Hum Genet 2011; 19: 1238-1245
  • 72 Tiwari VN, Sundaram SK, Chugani HT et al. Infantile spasms are associated with abnormal copy number variations. J Child Neurol 2013; 28: 1191-1196
  • 73 Du X, An Y, Yu L et al. A genomic copy number variant analysis implicates the MBD5 and HNRNPU genes in Chinese children with infantile spasms and expands the clinical spectrum of 2q23.1 deletion. BMC Med Genet 2014; 15: 62
  • 74 Hartmann C, von Spiczak S, Suls A et al. Investigating the genetic basis of fever-associated syndromic epilepsies using copy number variation analysis. Epilepsia 2015; 56: e26-e32
  • 75 Molinari F, Kaminska A, Fiermonte G et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009; 76: 188-194
  • 76 Tohyama J, Akasaka N, Osaka H et al. Early onset West syndrome with cerebral hypomyelination and reduced cerebral white matter. Brain Dev 2008; 30: 349-355
  • 77 Harvey K, Duguid IC, Alldred MJ et al. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci Off J Soc Neurosci 2004; 24: 5816-5826
  • 78 Shen J, Gilmore EC, Marshall CA et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010; 42: 245-249
  • 79 Kurian MA, Meyer E, Vassallo G et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain J Neurol 2010; 133: 2964-2970
  • 80 Poduri A, Chopra SS, Neilan EG et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia 2012; 53: e146-e150
  • 81 Edvardson S, Baumann A-M, Mühlenhoff M et al. West syndrome caused by ST3Gal-III deficiency. Epilepsia 2013; 54: e24-e27
  • 82 Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet 2013; 50: 199-202
  • 83 Nakamura K, Kodera H, Akita T et al. De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 2013; 93: 496-505
  • 84 Basel-Vanagaite L, Hershkovitz T, Heyman E et al. Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum. Am J Hum Genet 2013; 93: 524-529
  • 85 Kato M, Saitsu H, Murakami Y et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 2014; 82: 1587-1596
  • 86 Alazami AM, Hijazi H, Kentab AY et al. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J Med Genet 2014; 51: 224-228
  • 87 Kodera H, Nakamura K, Osaka H et al. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat 2013; 34: 1708-1714
  • 88 Perrault I, Hamdan FF, Rio M et al. Mutations in DOCK7 in individuals with epileptic encephalopathy and cortical blindness. Am J Hum Genet 2014; 94: 891-897
  • 89 Thevenon J, Milh M, Feillet F et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am J Hum Genet 2014; 95: 113-120
  • 90 Mignot C, Lambert L, Pasquier L et al. WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet 2015; 52: 61-70
  • 91 Simons C, Griffin LB, Helman G et al. Loss-of-function alanyl-tRNA synthetase mutations cause an autosomal-recessive early-onset epileptic encephalopathy with persistent myelination defect. Am J Hum Genet 2015; 96: 675-681
  • 92 Hansen J, Snow C, Tuttle E et al. De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet 2015; 96: 682-690