Ernährung & Medizin 2015; 30(03): 110-114
DOI: 10.1055/s-0035-1558480
e&m|wissen
Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart

Vitamin K

Ein altes Vitamin im neuen Licht
Uwe Gröber
Akademie & Zentrum für Mikronährstoffmedizin
,
Klaus Kisters
› Author Affiliations
Further Information

Publication History

Publication Date:
18 September 2015 (online)

Zusammenfassung

Das Thema „Vitamin K“ boomt derzeit im Gesundheitsmarkt. Vitamin K ist bekanntlich für die Blutgerinnung von Bedeutung. Allerdings ist Vitamin K keine einheitliche Substanz, sondern eine Gruppe engverwandter Derivate mit einer 2-Methyl-1,4-Naphthochinon-Struktur als gemeinsamem Grundgerüst. Von hohem Interesse sind darunter das Phyllochinon (Vitamin K1) sowie die als Vitamin K2 bezeichneten Menachinone MK-4 und MK-7 (Abb. [1]). Aktuelle Forschungsarbeiten weisen zunehmend auf einen hohen Nutzen der K-Vitamere in der Prävention und Therapie von Knochen- und Gefäßkrankheiten hin. Der folgende Beitrag legt den Schwerpunkt auf die Knochengesundheit, erhebt aber keinen Anspruch auf Vollständigkeit.

 
  • Literatur

  • 1 Dam H. Cholesterinstoffwechsel in Hühnereiern und Hühnchen. Biochem Z 1929; 215: 475-492
  • 2 Dam H. Haemorrhages in chicks reared on artificial diets: A new deficiency disease. Nature 1934; 133: 909-910
  • 3 Dam H. The antihaemorrhagic vitamin of the chick. Occurrence and chemical nature Nature 1935; 135: 652-653
  • 4 Dam H, Schonheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936; 30: 1075-1079
  • 5 McKee RW, Binkley SB, MacCorquodale DW et al. The isolation of vitamins K and K. J Am Chem Soc 1939; 61: 1295
  • 6 Thayer SA, McKee RW, Binkley SB et al. The assay of vitamins K and K. Proc Soc Exp Biol Med 1939; 41: 194-197
  • 7 Nelsestuen GL, Suttie JW. Mode of action of vitamin K. Calcium binding properties of bovine prothrombin Biochemistry 1972; 11: 4961-4964
  • 8 Stenflo J, Suttie JW. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem 1977; 46: 157-172
  • 9 Esmon CT, Suttie JW. Vitamin K-dependent carboxylase: Solubilization and properties. J Biol Chem 1976; 251: 6238-6243
  • 10 Lian JB, Friedman PA. The vitamin K-dependent synthesis of gamma-carboxyglutamic acid by bone microsomes. J Biol Chem 1978; 253: 6623-6626
  • 11 Suttie JW. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem 1980; 8: 191-223
  • 12 Bell RG. Metabolism of vitamin K and prothrombin synthesis: anticoagulants and the vitamin K-epoxide cycle. Fed Proc 1978; 37: 2599-2604
  • 13 Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun 1983; 117: 765-771
  • 14 Dowd P, Hershline R, Ham SW, Naganathan S. Vitamin K and energy transduction: a base strength amplification mechanism. Science 1995; 269: 1684-1691
  • 15 Berkner KL. The vitamin K-dependent carboxylase. Annu Rev Nutr 2005; 25: 127-149
  • 16 Olson RE. The function and metabolism of vitamin K. Annu Rev Nutr 1984; 4: 281-337
  • 17 Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998; 128: 785-788
  • 18 Suttie JW. Vitamin K in Health and Disease. Boca Raton: CRC Press; 2009
  • 19 Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost 2008; 100: 530-547
  • 20 Shutleff W, Aoyagi A. History of miso, soybean jiang (China), jang (Korea) and tauco/taotjo (Indonesia) (200 B.C. to 2009). Extensively annotated bibliography and sourcebook. Lafayette: Soyinfo Center; 2009. http://www.soyinfocenter.com/books/130
  • 21 Theuwissen E, Magdeleyns EJ, Braam LA. Vitamin K-status in healthy volunteers. Food Funct 2014; 5: 229-234
  • 22 Szulc P, Chapuy MC, Meunier PJ et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 91: 1769-1774
  • 23 Feskanich D, Weber P, Willett WC et al. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999; 69: 74-79
  • 24 Yamauchi M, Yamaguchi T, Nawata K et al. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr 2010; 29: 761-765
  • 25 Braam LA, Hoeks AP, Brouns F et al. Beneficial effects of vitamin K on the elastic properties of the vessel wall in postmenopausal women: a follow-up study. Thromb Haemost 2004; 91: 373-380
  • 26 Vermeer C, Shearer MJ, Zittermann A et al. Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr 2004; 43: 325-335
  • 27 Cockayne S, Adamson J, Lanham-New S et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 1256-1261
  • 28 Aonuma H, Miyakoshi N, Hongo M et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009; 218: 201-205
  • 29 Hirao M, Hashimoto J, Ando W et al. Response of serum carboxylated and undercarboxylated Osteocalcin to alendronate monotherapy and combined therapy with vitamin K in postmenopausal women. J Bone Miner Metab 2008; 26: 260-264
  • 30 Matsumoto Y, Mikuni-Takagaki Y, Kozai Y et al. Prior treatment with vitamin K significantly improves the efficacy of risedronate. Osteoporos Int 2009; 20: 1863-1872
  • 31 Shiraki M, Yamazaki Y, Shiraki Y et al. High level of serum undercarboxylated osteocalcin in patients with incident fractures during bisphosphonate treatment. J Bone Miner Metab 2010; 28: 578-584
  • 32 Summeren MJ van, Braam LA, Lilien MR et al. The effect of menaquinone-7 (vitamin K) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr 2009; 102: 1171-1178
  • 33 Knapen MH, Drummen NE, Smit E et al. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int 2013; 24: 2499-2507
  • 34 Beulens JW, van der A DL, Grobbee DE et al. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010; 33: 1699-1705
  • 35 Liabeuf S, Bourron O, Vemeer C et al. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc Diabetol 2014; 13: 85
  • 36 Rishavy MA, Berkner KL. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation. Biochemistry 2008; 47: 9836-9846
  • 37 Shearer M. Vitamin K. Lancet 1995; 345: 229-234
  • 38 Price PA. Role of vitamin-K-dependent proteins in bone metabolism. Annu Rev Nutr 1988; 8: 565-583
  • 39 Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr 1996; 126 (4 Suppl ) 1181 S-1186 S
  • 40 Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr 1995; 15: 399-417
  • 41 Suttie JW. Synthesis of vitamin K-dependent proteins. FASEB J 1993; 7: 445-452
  • 42 Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations Haemostasis 2000; 30: 298-307
  • 43 Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 2012; 11: 93
  • 44 Theuwissen E, Teunissen KJ, Spronk HM et al. Effect of low-dose supplements of menaquinone-7 (vitamin K) on the stability of oral anticoagulant treatment: dose-response relationship in healthy volunteers. J Thromb Haemost 2013; 11: 1085-1092