Semin Reprod Med 2015; 33(05): 317-325
DOI: 10.1055/s-0035-1558404
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Wnt Signaling in Stem Cells and Tumor Stem Cells

Michael Kahn
1   Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California
› Author Affiliations
Further Information

Publication History

Publication Date:
06 August 2015 (online)

Abstract

The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance and repair and regeneration of tissues and organs, through their respective somatic stem cells (SSCs). However, aberrant Wnt signaling is associated with a wide array of tumor types and Wnt signaling is important in the so-termed cancer stem cell/tumor-initiating cell (CSC/TIC) population. The ability to safely therapeutically target the Wnt signaling pathway offers enormous promise. However, just like the Sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review our current understanding of the role of Wnt signaling in SSCs and CSC/TICs and the potential to pharmacologically manipulate these endogenous stem cell populations (both normal and tumor).

 
  • References

  • 1 Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112 (9) 3543-3553
  • 2 Zhang M, Rosen JM. Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev 2006; 16 (1) 60-64
  • 3 Sonderegger S, Pollheimer J, Knöfler M. Wnt signalling in implantation, decidualisation and placental differentiation—review. Placenta 2010; 31 (10) 839-847
  • 4 Maruyama T, Ono M, Yoshimura Y. Somatic stem cells in the myometrium and in myomas. Semin Reprod Med 2013; 31 (1) 77-81
  • 5 Deane JA, Gualano RC, Gargett CE. Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman's syndrome and infertility?. Curr Opin Obstet Gynecol 2013; 25 (3) 193-200
  • 6 Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11 (4) 273-282
  • 7 Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012; 13 (12) 767-779
  • 8 Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5 (3) 367-377
  • 9 Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 2009; 10 (4) 276-286
  • 10 Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781-810
  • 11 Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5 (9) 691-701
  • 12 Thrasivoulou C, Millar M, Ahmed A. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways. J Biol Chem 2013; 288 (50) 35651-35659
  • 13 Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev 2003; 17 (10) 1189-1200
  • 14 Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 2005; 306 (2) 357-363
  • 15 Nemeth MJ, Mak KK, Yang Y, Bodine DM. beta-Catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. Stem Cells 2009; 27 (5) 1109-1119
  • 16 Malhotra S, Kincade PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 2009; 4 (1) 27-36
  • 17 Monga SP. Role of Wnt/β-catenin signaling in liver metabolism and cancer. Int J Biochem Cell Biol 2011; 43 (7) 1021-1029
  • 18 Beers MF, Morrisey EE. The three R's of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 2011; 121 (6) 2065-2073
  • 19 Whyte JL, Smith AA, Helms JA. Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 2012; 4 (8) a008078
  • 20 Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 2010; 11 (2) 77-86
  • 21 Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974; 141 (4) 537-561
  • 22 Lin SA, Barker N. Gastrointestinal stem cells in self-renewal and cancer. J Gastroenterol 2011; 46 (9) 1039-1055
  • 23 Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88 (8) 871-883
  • 24 Williams A. Central nervous system regeneration—where are we?. QJM 2014; 107 (5) 335-339
  • 25 Reya T, Duncan AW, Ailles L , et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423 (6938) 409-414
  • 26 Lindvall C, Zylstra CR, Evans N , et al. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS ONE 2009; 4 (6) e5813
  • 27 Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 2012; 143 (6) 1518-1529.e7
  • 28 Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003; 17 (14) 1709-1713
  • 29 Korinek V, Barker N, Moerer P , et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19 (4) 379-383
  • 30 Tian H, Biehs B, Warming S , et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011; 478 (7368) 255-259
  • 31 Yan KS, Chia LA, Li X , et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 2012; 109 (2) 466-471
  • 32 Barker N, van Es JH, Kuipers J , et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449 (7165) 1003-1007
  • 33 de Lau W, Barker N, Low TY , et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476 (7360) 293-297
  • 34 Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005; 129 (2) 626-638
  • 35 Sato T, van Es JH, Snippert HJ , et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469 (7330) 415-418
  • 36 Bastide P, Darido C, Pannequin J , et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 2007; 178 (4) 635-648
  • 37 Mori-Akiyama Y, van den Born M, van Es JH , et al. SOX9 is required for the differentiation of Paneth cells in the intestinal epithelium. Gastroenterology 2007; 133 (2) 539-546
  • 38 Potten CS, Hume WJ, Reid P, Cairns J. The segregation of DNA in epithelial stem cells. Cell 1978; 15 (3) 899-906
  • 39 Ritsma L, Ellenbroek SI, Zomer A , et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 2014; 507 (7492) 362-365
  • 40 De Mey JR, Freund JN. Understanding epithelial homeostasis in the intestine: An old battlefield of ideas, recent breakthroughs and remaining controversies. Tissue Barriers 2013; 1 (2) e24965
  • 41 Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014; 344 (6189) 1242281
  • 42 Oh IH, Humphries RK. Concise review: multidimensional regulation of the hematopoietic stem cell state. Stem Cells 2012; 30 (1) 82-88
  • 43 Fukuda S, Pelus LM. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood 2001; 98 (7) 2091-2100
  • 44 Leung CG, Xu Y, Mularski B, Liu H, Gurbuxani S, Crispino JD. Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J Exp Med 2007; 204 (7) 1603-1611
  • 45 Ma H, Nguyen C, Lee KS, Kahn M. Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 2005; 24 (22) 3619-3631
  • 46 Park E, Gang EJ, Hsieh YT , et al. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia. Blood 2011; 118 (8) 2191-2199
  • 47 Gang EJ, Hsieh YT, Pham J , et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 2014; 33 (17) 2169-2178
  • 48 Kim YM, Kahn M. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. Res Rep Biochem 2014; 4: 1-12
  • 49 Cohnheim J. Ueber entzuendung und eiterung (about inflammation and suppuration). Path Anat Physiol Klin Med 1867; 40: 1-79
  • 50 Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317 (5836) 337
  • 51 Bruce WR, Van Der Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 1963; 199: 79-80
  • 52 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3 (7) 730-737
  • 53 Jamieson CH, Weissman IL, Passegué E. Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 2004; 6 (6) 531-533
  • 54 Singh SK, Hawkins C, Clarke ID , et al. Identification of human brain tumour initiating cells. Nature 2004; 432 (7015) 396-401
  • 55 Fang D, Nguyen TK, Leishear K , et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65 (20) 9328-9337
  • 56 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100 (7) 3983-3988
  • 57 Ma S, Chan KW, Hu L , et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132 (7) 2542-2556
  • 58 Li C, Heidt DG, Dalerba P , et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67 (3) 1030-1037
  • 59 Kusunoki S, Kato K, Tabu K , et al. The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecol Oncol 2013; 129 (3) 598-605
  • 60 O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445 (7123) 106-110
  • 61 Wielenga VJ, Smits R, Korinek V , et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 1999; 154 (2) 515-523
  • 62 Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 2006; 25 (31) 4361-4369
  • 63 Katoh Y, Katoh M. Comparative genomics on PROM1 gene encoding stem cell marker CD133. Int J Mol Med 2007; 19 (6) 967-970
  • 64 Yamada T, Takaoka AS, Naishiro Y , et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res 2000; 60 (17) 4761-4766
  • 65 Corrêa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer 2012; 12: 303
  • 66 Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 2009; 69 (14) 5627-5629
  • 67 Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 2007; 67 (22) 10831-10839
  • 68 Zhang Y, Toy KA, Kleer CG. Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol 2012; 25 (2) 178-184
  • 69 DiMeo TA, Anderson K, Phadke P , et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 2009; 69 (13) 5364-5373
  • 70 Mani SA, Guo W, Liao MJ , et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133 (4) 704-715
  • 71 Bhat-Nakshatri P, Appaiah H, Ballas C , et al. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24− phenotype. BMC Cancer 2010; 10: 411
  • 72 Brabletz T, Hlubek F, Spaderna S , et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 2005; 179 (1-2) 56-65
  • 73 Wang J, O'Bara MA, Pol SU, Sim FJ. CD133/CD140a-based isolation of distinct human multipotent neural progenitor cells and oligodendrocyte progenitor cells. Stem Cells Dev 2013; 22 (15) 2121-2131
  • 74 Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/prominin-1. Int J Biochem Cell Biol 2005; 37 (4) 715-719
  • 75 Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 2010; 584 (9) 1659-1664
  • 76 Yin AH, Miraglia S, Zanjani ED , et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90 (12) 5002-5012
  • 77 Vermeulen L, Todaro M, de Sousa Mello F , et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 2008; 105 (36) 13427-13432
  • 78 Uchida H, Yamazaki K, Fukuma M , et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 2010; 101 (7) 1731-1737
  • 79 Haraguchi N, Utsunomiya T, Inoue H , et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006; 24 (3) 506-513
  • 80 O'Brien CA, Kreso A, Jamieson CH. Cancer stem cells and self-renewal. Clin Cancer Res 2010; 16 (12) 3113-3120
  • 81 Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK. A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 2005; 4 (2) 203-205
  • 82 Moshaver B, van Rhenen A, Kelder A , et al. Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells 2008; 26 (12) 3059-3067
  • 83 Wang Y, Krivtsov AV, Sinha AU , et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327 (5973) 1650-1653
  • 84 Heidel FH, Bullinger L, Feng Z , et al. Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 2012; 10 (4) 412-424
  • 85 Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron 2013; 80 (3) 588-601
  • 86 Cullen SM, Mayle A, Rossi L, Goodell MA. Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol 2014; 107: 39-75
  • 87 Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell 2013; 154 (2) 274-284
  • 88 LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res 2010; 16 (12) 3121-3129
  • 89 Merchant AA, Matsui W. Targeting hedgehog—a cancer stem cell pathway. Clin Cancer Res 2010; 16 (12) 3130-3140
  • 90 Pannuti A, Foreman K, Rizzo P , et al. Targeting notch to target cancer stem cells. Clin Cancer Res 2010; 16 (12) 3141-3152
  • 91 Baker AM, Cereser B, Melton S , et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Reports 2014; 8 (4) 940-947
  • 92 Hock H, Hamblen MJ, Rooke HM , et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431 (7011) 1002-1007
  • 93 Cairns J. Mutation selection and the natural history of cancer. Nature 1975; 255 (5505) 197-200
  • 94 Cicalese A, Bonizzi G, Pasi CE , et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138 (6) 1083-1095
  • 95 Merok JR, Lansita JA, Tunstead JR, Sherley JL. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res 2002; 62 (23) 6791-6795
  • 96 Lee JY, Nakada D, Yilmaz OH , et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7 (5) 593-605
  • 97 Moon RT. Wnt/beta-catenin pathway. Sci STKE 2005; 2005 (271) cm1
  • 98 Teo J-L, Kahn M. The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 2010; 62 (12) 1149-1155
  • 99 Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10 (7) 468-477
  • 100 Kung AL, Rebel VI, Bronson RT , et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 2000; 14 (3) 272-277
  • 101 Yamauchi T, Oike Y, Kamon J , et al. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet 2002; 30 (2) 221-226
  • 102 Roth JF, Shikama N, Henzen C , et al. Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. EMBO J 2003; 22 (19) 5186-5196
  • 103 Teo JL, Ma H, Nguyen C, Lam C, Kahn M. Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A 2005; 102 (34) 12171-12176
  • 104 Hasegawa K, Yasuda SY, Teo JL , et al. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med 2012; 1 (1) 18-28
  • 105 Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M. Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 2007; 104 (13) 5668-5673
  • 106 Marson A, Foreman R, Chevalier B , et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 2008; 3 (2) 132-135
  • 107 Schenke-Layland K, Nsair A, Van Handel B , et al. Recapitulation of the embryonic cardiovascular progenitor cell niche. Biomaterials 2011; 32 (11) 2748-2756
  • 108 Wend P, Fang L, Zhu Q , et al. Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours. EMBO J 2013; 32 (14) 1977-1989
  • 109 He K, Xu T, Xu Y, Ring A, Kahn M, Goldkorn A. Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem-like phenotype through modulation of the PI3K/Akt/β-catenin/CBP pathway. Int J Cancer 2014; 134 (1) 43-54
  • 110 Henderson Jr WR, Chi EY, Ye X , et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 2010; 107 (32) 14309-14314
  • 111 Hao S, He W, Li Y , et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 2011; 22 (9) 1642-1653
  • 112 Sasaki T, Hwang H, Nguyen C, Kloner RA, Kahn M. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS ONE 2013; 8 (9) e75010
  • 113 Kahn M. Symmetric division versus asymmetric division: a tale of two coactivators. Future Med Chem 2011; 3 (14) 1745-1763
  • 114 El-Khoueiry AB, Ning Y, Yang D , et al. A phase I first-in-human study of PRI-724 in patients (pts) with advanced solid tumors. J Clin Oncol 2013; 2501: 31