Planta Medica Letters 2015; 2(01): e61-e64
DOI: 10.1055/s-0035-1558206
Letter
Georg Thieme Verlag KG Stuttgart · New York

Formation of a Predominant Metabolite of Hydroxydihydrocarvone Evaluated by a Biomimetic Oxidative Model and in Rat Liver Microsomes

Sara M. Thomazzi
1   Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
,
Fernanda L. Moreira
2   Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Izabel C. C. Turatti
3   NPPNS, Departamento de Físico-Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Juliana N. Paula e Souza
3   NPPNS, Departamento de Físico-Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Luciana N. Andrade
1   Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
,
Denise B. Silva
3   NPPNS, Departamento de Físico-Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Anderson R. M. Oliveira
4   Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Damião P. De Sousa
5   Centro de Ciências da Saúde-Campus I, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
,
Norberto P. Lopes
3   NPPNS, Departamento de Físico-Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
› Author Affiliations
Further Information

Publication History

received 16 May 2015
revised 08 July 2015

accepted 26 September 2015

Publication Date:
17 November 2015 (online)

Abstract

This paper reports the biomimetic oxidation of hydroxydihydrocarvone by iodosylbenzene using tetraphenyl-porphine iron(III) chloride as the catalyst in ethyl acetate. Mass spectrometry fragmentation maps of hydroxydihydrocarvone (obtained by gas chromatography-mass spectrometry analyses) allowed for the identification of the major product as 4-hydroxy-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-one (4-hydroxy-hydroxydihydrocarvone). This compound was also observed in an in vitro metabolism assay that employed isolated rat liver microsomes, thereby validating the biomimetic procedure.

Supporting Information

 
  • References

  • 1 Büchi G, Wüest HJ. New synthesis of β-agarofuran and of dihydroagarofuran. J Org Chem 1979; 44: 546-549
  • 2 De Sousa DP, Oliveira FS, Almeida RN. Evaluation of the central activity of hydroxydihydrocarvone. Biol Pharm Bull 2006; 29: 811-812
  • 3 Oliveira FS, De Sousa DP, Almeida RN. Antinociceptive effect of hydroxydihydrocarvone. Biol Pharm Bull 2008; 31: 588-591
  • 4 de Cássia da Silveira e Sá R, Andrade LN, De Sousa DP. A review on anti-inflammatory activity of monoterpenes. Molecules 2013; 18: 1227-1254
  • 5 de Sousa DP, Camargo EA, Oliveira FS, Almeida RN. Anti-inflammatory activity of hydroxydihydrocarvone. Z Naturforsch C 2010; 65: 543-550
  • 6 Guimarães AG, Quintans JS, Quintans jr. LJ. Monoterpenes with analgesic activity-a systematic review. Phytother Res 2013; 27: 1-15
  • 7 Oliveira FS, Silva MVB, Sena MCP, Santos HB, Oliveira KM, Diniz MFFM, De Sousa DP, Almeida RN. Subacute toxicological evaluation of hydroxydihydrocarvone in mice. Pharm Biol 2009; 47: 690-696
  • 8 Abass K, Reponen P, Mattila S, Pelkonen O. Metabolism of α-thujone in human hepatic preparations in vitro . Xenobiotica 2011; 41: 101-111
  • 9 Haigou R, Miyazawa M. Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes. J Oleo Sci 2012; 61: 35-43
  • 10 Miyazawa M, Marumoto S, Takahashi T, Nakahashi H, Haigou R, Nakanishi K. Metabolism of (+)- and (−)-menthols by CYP2A6 in human liver microsomes. J Oleo Sci 2011; 60: 127-132
  • 11 Miyazawa M, Shindo M, Shimada T. Roles of cytochrome P4503 A enzymes in the 2-hydroxylation of 1, 4-cineole, a monoterpene cyclic ether, by rat and human liver microsomes. Xenobiotica 2001; 31: 713-723
  • 12 Miyazawa M, Shindo M, Shimada T. Oxidation of 1, 8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P4503A enzymes in rat and human liver microsomes. Drug Metab Dispos 2001; 29: 200-205
  • 13 Miyazawa M, Shindo M, Shimada T. Metabolism of (+)- and (−)-limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes. Drug Metab Dispos 2002; 30: 602-607
  • 14 Riley RJ, Grime K. Metabolic screening in vitro: metabolic stability CYP inhibition and induction. Drug Discov Today Technol 2004; 1: 365-372
  • 15 Lohmann W, Karst U. Biomimetic modeling of oxidative drug metabolismo – strategies, advantages and limitations. Anal Bioanal Chem 2008; 391: 79-96
  • 16 Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev 1996; 96: 2841-2888
  • 17 Groves JT. High-valent iron in chemical and biological oxidations. J Inorg Biochem 2006; 100: 434-447
  • 18 Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. C R Chim 2007; 10: 392-413
  • 19 Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introdução à Espectroscopia, 4th edition. São Paulo: Cengage Learning; 2012
  • 20 Messiano GB, Santos RAS, Ferreira LS, Simões RA, Jabor VAP, Kato MJ, Lopes NP, Pupo MT, Oliveira ARM. In vitro metabolism study of the promising anticancer agent the lignan (−)-grandisin. J Pharm Biomed Anal 2013; 72: 240-244
  • 21 Pigatto MC, Lima MCA, Galdino SL, Pitta IR, Vessecchi R, Assis MD, Santos JS, Costa TD, Lopes NP. Metabolism evaluation of the anticancer candidate AC04 by biomimetic oxidative model and rat liver microsomes. Eur J Med Chem 2011; 46: 4245-4251
  • 22 Saltzmann H, Sharefkin JG. Iodosylbenzene. Org Synth 1973; 5: 658