Planta Med 2016; 82(01/02): 97-105
DOI: 10.1055/s-0035-1558112
Biological and Pharmacological Activitiy
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antihepatofibrotic Effects of Aqueous Extract of Prunella vulgaris on Carbon Tetrachloride-Induced Hepatic Fibrosis in Rats

Yi-Xiang Hu
1   Zhejiang Academy of Medical Sciences, Hangzhou, China
,
Chen-Huan Yu
1   Zhejiang Academy of Medical Sciences, Hangzhou, China
,
Fang Wu
2   Zhejiang Chinese Medical University, Hangzhou, China
,
Wen-Ying Yu
1   Zhejiang Academy of Medical Sciences, Hangzhou, China
,
Yu-Sen Zhong
1   Zhejiang Academy of Medical Sciences, Hangzhou, China
,
Hua-Zhong Ying
1   Zhejiang Academy of Medical Sciences, Hangzhou, China
,
Bing Yu
2   Zhejiang Chinese Medical University, Hangzhou, China
› Author Affiliations
Further Information

Publication History

received 19 May 2015
revised 08 August 2015

accepted 22 August 2015

Publication Date:
13 October 2015 (online)

Abstract

Prunella vulgaris has been widely used in the folk medicine of Northeastern Asian countries for the treatment of acute liver injury and infectious hepatitis. In the present study, the protective effect of aqueous extract from P. vulgaris was investigated on carbon tetrachloride-induced hepatic fibrosis in vivo. Our data showed that the administration of aqueous extract from P. vulgaris at doses of 50, 100, and 200 mg/kg significantly reduced the elevated serum levels of alanine aminotransferase, aspartate aminotransferase, type III precollagen, and hyaluronic acid in rats with hepatic fibrosis. In addition, aqueous extract from P. vulgaris also reduced the incidence of liver lesions and the formation of fibrous septa, and remarkably decreased the serum levels of inflammatory cytokines, platelet derived growth factor, interleukin-4, interleukin-8, and tumor necrosis factor alpha. Furthermore, aqueous extract from P. vulgaris significantly inhibited the activation of hepatic stellate cells by regulating the expression of α smooth muscle actin, transforming growth factor β 1, and smad2 and also decreased the deposition of extracellular matrix proteins via regulating the expressions of tissue inhibitor of metalloproteinase-1, matrix metalloproteinase-2,-13. Real-time polymerase chain reaction further revealed that post-treatment with aqueous extract from P. vulgaris decreased the elevated levels of miR-34a and miR-199a-5p in hepatic fibrosis rats. These results demonstrated that aqueous extract from P. vulgaris alleviates carbon tetrachloride-induced hepatic fibrosis by inhibiting the activation of hepatic stellate cells, promoting collagenolysis and regulating fibrosis-related microRNAs.

 
  • References

  • 1 Fowell AJ, Iredal JP. Emerging therapies for liver fibrosis. Dig Dis 2006; 24: 174-183
  • 2 Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-456
  • 3 Karakus E, Karadeniz A, Simsek N, Can I, Kara A, Yildirim S, Kalkan Y, Kisa F. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CCl4). J Hazard Mater 2011; 195: 208-213
  • 4 Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 2007; 131: 1728-1734
  • 5 Huang Q, Li Y, Zhang S, Huang R, Zheng L, Wei L, He M, Liao M, Li L, Zhuo L, Lin X. Effect and mechanism of methyl helicterate isolated from Helicteres angustifolia (Sterculiaceae) on hepatic fibrosis induced by carbon tetrachloride in rats. J Ethnopharmacol 2012; 143: 889-895
  • 6 Jiang Y, Wang C, Li YY, Wang XC, An JD, Wang YJ, Wang XJ. Mistletoe alkaloid fractions alleviates carbon tetrachloride-induced liver fibrosis through inhibition of hepatic stellate cell activation via TGF-β/Smad interference. J Ethnopharmacol 2014; 158: 230-238
  • 7 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218
  • 8 Graziadei IW. Living donor liver transplantation. Trop Gastroenterol 2007; 28: 45-50
  • 9 Yang Y, Yang S, Chen M, Zhang X, Zou Y, Zhang X. Compound Astragalus and Salvia miltiorrhiza extract exerts anti-fibrosis by mediating TGF-beta/Smad signaling in myofibroblasts. J Ethnopharmacol 2008; 118: 264-270
  • 10 Guo C, Xu L, He Q, Liang T, Duan X, Li R. Anti-fibrotic effects of puerarin on CCl4-induced hepatic fibrosis in rats possibly through the regulation of PPAR-γ expression and inhibition of PI3 K/Akt pathway. Food Chem Toxicol 2013; 56: 436-442
  • 11 Jiang SJ, Zhao LZ, Yu YG, Duan LD, Tan BX. Study on optimization of supercritical fluid extraction conditions of ursolic acid from Prunella vulgaris Linn leaves. J Food Sci 2008; 29: 294-297
  • 12 Ryu SY, Oak MH, Yoon SK, Cho DI, Yoo GS, Kim TS, Kim KM. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris . Planta Med 2000; 66: 358-360
  • 13 Choi JH, Han EH, Hwang YP, Choi JM, Choi CY, Chung YC, Seo JK, Jeong HG. Suppression of PMA-induced tumor cell invasion and metastasis by aqueous extract isolated from Prunella vulgaris via the inhibition of NF-kappaB-dependent MMP-9 expression. Food Chem Toxicol 2010; 48: 564-571
  • 14 Psotová J, Kolár M, Sousek J, Svagera Z, Vicar J, Ulrichová NJ. Biological activities of Prunella vulgaris extract. Phytother Res 2003; 17: 1082-1087
  • 15 Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina . BMC Complement Altern Med 2013; 13: 310
  • 16 Wang ZJ, Zhao YY, Wang B, Ai TM, Chen YY. Depsides from Prunella vulgaris . Chin Chem Lett 2000; 11: 997-1000
  • 17 Lin X, Zhang S, Huang QF, Wei L, Zheng L, Chen ZN, Jiao Y, Huang JC, Fu SJ, Huang RB. Protective effect of Fufang-Liu-Yue-Qing, a traditional Chinese herb al formula, on CCl4 induced liver fibrosis in rats. J Ethnopharmacol 2012; 142: 548-556
  • 18 Mahmoud MF, Fahmy A, Auf MA. Evaluation of the hepatoprotective effect of green tea extract and selenium on CCl4-induced fibrosis. e-SPEN J 2012; 7: e23-e29
  • 19 Nikolaidis N, Kountouras J, Giouleme O, Tzarou V, Chatzizisi O, Patsiaoura K, Papageorgiou A, Leontsini M, Eugenidis N, Zamboulis C. Colchicine treatment of liver fibrosis. Hepatogastroenterology 2006; 53: 281-285
  • 20 Liu J. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 1995; 49: 57-68
  • 21 Liu J. Oleanolic acid and ursolic acid: Research perspectives. J Ethnopharmacol 2005; 100: 92-94
  • 22 Mix KS, Mengshol JA, Benbow U, Vincenti MP, Sporn MB, Brinckerhoff CE. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum 2001; 44: 1096-1104
  • 23 Taira Z, Yabe K, Hamaguchi Y, Hirayama K, Kishimoto M, Ishida S, Ueda Y. Effects of Sho-saiko-to extract and its components, baicalin, baicalein, glycyrrhizin and glycyrrhetic acid on pharmacokinetic behavior of salicylamide in carbon tetrachloride intoxicated rats. Food Chem Toxicol 2004; 42: 803-807
  • 24 Nafees S, Rashid S, Ali N, Hasan SK, Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NF-κB/MAPK pathway. Chem Biol Interact 2015; 231: 98-107
  • 25 Yang EJ, Kim SI, Park SY, Bang HY, Jeong JH, So JH, Rhee IK, Song KS. Fermentation enhances the in vitro antioxidative effect of onion (Alliumcepa) via an increase in quercetin content. Food Chem Toxicol 2012; 50: 2042-2048
  • 26 Wang L, Cheng D, Wang H, Di L, Zhou X, Xu T, Yang X, Liu Y. The hepatoprotective and antifibrotic effects of Saururus chinensis against carbon tetrachloride induced hepatic fibrosis in rats. J Ethnopharmacol 2009; 126: 487-491
  • 27 Pinzani M, Macias-Barragan J. Update on the pathophysiology of liver fibrosis. Expert Rev Gastroenterol Hepatol 2010; 4: 459-472
  • 28 Olsen AL, Bloomer SA, Chan EP, Gaça MD, Georges PC, Sackey B, Uemura M, Janmey PA, Wells RG. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol 2011; 301: G110-G118
  • 29 Lin HJ, Chen JY, Lin CF, Kao ST, Cheng JC, Chen HL, Chen CM. Hepatoprotective effects of Yi Guan Jian, an herbal medicine, in rats with dimethylnitrosamine-induced liver fibrosis. J Ethnopharmacol 2011; 134: 953-960
  • 30 Bauer M, Schuppan D. TGF-β1 in liver fibrosis: time to change paradigms. FEBS Lett 2001; 502: 1-3
  • 31 Yoshida S, Ikenaga N, Liu SB, Peng ZW, Chung J, Sverdlov DY. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 2014; 147: 1378-1392
  • 32 Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 2006; 10: 76-99
  • 33 Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13: 1324-1332
  • 34 Lee TF, Lin YL, Huang YT. Studies on anti-proliferative effects of phthalides from Ligusticum chuanxiong in hepatic stellate cells. Planta Med 2007; 73: 527-534
  • 35 Chen SL, Zheng MH, Shi KQ, Yang T, Chen YP. A new strategy for treatment of liver fibrosis: letting MicroRNAs do the job. BioDrugs 2013; 27: 25-34
  • 36 Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53: 209-218
  • 37 Maubach G, Lim MC, Chen J, Yang H, Zhuo L. miRNA studies in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol 2011; 17: 2748-2773
  • 38 Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 2011; 6: e16081
  • 39 Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA 2003; 9: 175-179
  • 40 Dai BH, Geng L, Wang Y, Sui CJ, Xie F, Shen RX, Shen WF, Yang JM. microRNA-199a-5 p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis 2013; 4: e604
  • 41 Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, Copin MC, Wallaert B, Glowacki F, Dewaeles E, Milosevic J, Maurizio J, Tedrow J, Marcet B, Lo-Guidice JM, Kaminski N, Barbry P, Luedde T, Perrais M, Mari B, Pottier N. miR-199a-5 p is upregulated during fibrogenic response to tissue injury and mediates TGF beta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013; 9: e1003291
  • 42 Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, Radtke A, Lu M, Paul A, Gerken G, Beckebaum S. Role of microRNA-199a-5 p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 2010; 9: 227
  • 43 Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 2011; 30: 3404-3415
  • 44 Yi H, Liang B, Jia J, Liang N, Xu H, Ju G, Ma S, Liu X. Differential roles of miR-199a-5 p in radiation-induced autophagy in breast cancer cells. FEBS Lett 2013; 587: 436-443
  • 45 Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Le KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p 53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745-752
  • 46 Younossi ZM, Kleiner DE, Gramlich TL, Boparai N. Application of NIDDK nash pathologic protocol to patients with non-alcoholic fatty liver disease. Gastroenterology 2000; 118: A974
  • 47 Ying HZ, Liu YH, Yu B, Wang ZY, Zang JN, Yu CH. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem Toxicol 2013; 52: 53-60
  • 48 Wang JH, Choi MK, Shin JW, Hwang SY, Son CG. Antifibrotic effects of Artemisia capillaris and Artemisia iwayomogi in a carbon tetrachloride-induced chronic hepatic fibrosis animal model. J Ethnopharmacol 2012; 140: 179-185
  • 49 Li WQ, Chen C, Xu MD, Guo J, Li YM, Xia QM, Liu HM, He J, Yu HY, Zhu L. The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J 2011; 278: 1522-1532