Journal of Pediatric Epilepsy 2015; 04(02): 053-060
DOI: 10.1055/s-0035-1555601
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Single Gene Generalized Epilepsy in Africa

Ashraf Y. Mohamed
1   Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
,
Ahmed M. Musa
2   Department of Immunology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
› Author Affiliations
Further Information

Publication History

17 July 2014

28 October 2014

Publication Date:
31 July 2015 (online)

Abstract

The study of families with epilepsy has unraveled several mysteries about the pathophysiology of the disease. However, the majority of those studies were conducted on non-African populations. Africa is strongly believed to be the origin of humans and thus the African genome must give a more comprehensive view of Mendelian diseases. In this review, we have navigated the genes predisposing to familial genetic epilepsies in Africa and compared those to the genes identified worldwide looking for a unique African flavor in familial epilepsies.

 
  • References

  • 1 World Health Organization, International Bureau for Epilepsy, International League Against Epilepsy. Epilepsy in the WHO African region: bridging the gap, the global campaign against epilepsy “out of the shadows.”. Brazzaville: WHO Regional Office for Africa; 2004
  • 2 Berg AT, Berkovic SF, Brodie MJ , et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010; 51 (4) 676-685
  • 3 Online Mendelian Inheritance in Man. OMIM: An online catalog of human genes and genetic disorders, 2014. Available at: http://omim.org/ . Accessed August 2014
  • 4 Ashrafian H. Familial epilepsy in the pharaohs of ancient Egypt's eighteenth dynasty. Epilepsy Behav 2012; 25 (1) 23-31
  • 5 Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30 (4) 389-399
  • 6 Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 1997; 120 (Pt 3) 479-490
  • 7 Dravet C. Les epilepsies graves de l'enfant. Vie Med 1978; 8: 543-548 (in French)
  • 8 Veggiotti P, Cardinali S, Montalenti E, Gatti A, Lanzi G. Generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy: a case report of two Italian families. Epileptic Disord 2001; 3 (1) 29-32
  • 9 Harkin LA, McMahon JM, Iona X , et al; Infantile Epileptic Encephalopathy Referral Consortium. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007; 130 (Pt 3): 843-852
  • 10 Wallace RH, Berkovic SF, Howell RA, Sutherland GR, Mulley JC. Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21. J Med Genet 1996; 33 (4) 308-312
  • 11 Johnson EW, Dubovsky J, Rich SS , et al. Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest. Hum Mol Genet 1998; 7 (1) 63-67
  • 12 Baulac S, Gourfinkel-An I, Picard F , et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999; 65 (4) 1078-1085
  • 13 Moulard B, Guipponi M, Chaigne D, Mouthon D, Buresi C, Malafosse A. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am J Hum Genet 1999; 65 (5) 1396-1400
  • 14 Peiffer A, Thompson J, Charlier C , et al. A locus for febrile seizures (FEB3) maps to chromosome 2q23-24. Ann Neurol 1999; 46 (4) 671-678
  • 15 Nakayama J, Hamano K, Iwasaki N , et al. Significant evidence for linkage of febrile seizures to chromosome 5q14-q15. Hum Mol Genet 2000; 9 (1) 87-91
  • 16 Nakayama J, Yamamoto N, Hamano K , et al. Linkage and association of febrile seizures to the IMPA2 gene on human chromosome 18. Neurology 2004; 63 (10) 1803-1807
  • 17 Nabbout R, Prud'homme JF, Herman A , et al. A locus for simple pure febrile seizures maps to chromosome 6q22-q24. Brain 2002; 125 (Pt 12) 2668-2680
  • 18 Nabbout R, Baulac S, Desguerre I , et al. New locus for febrile seizures with absence epilepsy on 3p and a possible modifier gene on 18p. Neurology 2007; 68 (17) 1374-1381
  • 19 Mantegazza M, Gambardella A, Rusconi R , et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci U S A 2005; 102 (50) 18177-18182
  • 20 Audenaert D, Schwartz E, Claeys KG , et al. A novel GABRG2 mutation associated with febrile seizures. Neurology 2006; 67 (4) 687-690
  • 21 Hedera P, Ma S, Blair MA , et al. Identification of a novel locus for febrile seizures and epilepsy on chromosome 21q22. Epilepsia 2006; 47 (10) 1622-1628
  • 22 Dai XH, Chen WW, Wang X , et al. A novel genetic locus for familial febrile seizures and epilepsy on chromosome 3q26.2-q26.33. Hum Genet 2008; 124 (4) 423-429
  • 23 Salzmann A, Guipponi M, Lyons PJ , et al. Carboxypeptidase A6 gene (CPA6) mutations in a recessive familial form of febrile seizures and temporal lobe epilepsy and in sporadic temporal lobe epilepsy. Hum Mutat 2012; 33 (1) 124-135
  • 24 Wei S, Segura S, Vendrell J , et al. Identification and characterization of three members of the human metallocarboxypeptidase gene family. J Biol Chem 2002; 277 (17) 14954-14964
  • 25 Lerner JT, Sankar R, Mazarati AM. Galanin and epilepsy. Cell Mol Life Sci 2008; 65 (12) 1864-1871
  • 26 Fendri-Kriaa N, Kammoun F, Salem IH , et al. New mutation c.374C>T and a putative disease-associated haplotype within SCN1B gene in Tunisian families with febrile seizures. Eur J Neurol 2011; 18 (5) 695-702
  • 27 Qin N, D'Andrea MR, Lubin ML, Shafaee N, Codd EE, Correa AM. Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit. Eur J Biochem 2003; 270 (23) 4762-4770
  • 28 Dibbens LM, Feng HJ, Richards MC , et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004; 13 (13) 1315-1319
  • 29 Marini C, Harkin LA, Wallace RH, Mulley JC, Scheffer IE, Berkovic SF. Childhood absence epilepsy and febrile seizures: a family with a GABA(A) receptor mutation. Brain 2003; 126 (Pt 1) 230-240
  • 30 Singh NA, Pappas C, Dahle EJ , et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet 2009; 5 (9) e1000649
  • 31 Wallace RH, Wang DW, Singh R , et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998; 19 (4) 366-370
  • 32 Escayg A, MacDonald BT, Meisler MH , et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000; 24 (4) 343-345
  • 33 Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68 (6) 1327-1332
  • 34 Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum Mutat 2005; 25 (6) 535-542
  • 35 Marini C, Mei D, Temudo T , et al. Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia 2007; 48 (9) 1678-1685
  • 36 Heron SE, Scheffer IE, Iona X , et al. De novo SCN1A mutations in Dravet syndrome and related epileptic encephalopathies are largely of paternal origin. J Med Genet 2010; 47 (2) 137-141
  • 37 Mrabet H, Belhedi N, Bouchlaka S, El Gaaied A, Mrabet A. GEFS+ is not related to the most common mutations of SCN1B, SCN1A and GABRG2 in two Tunisian families. Neurol Sci 2007; 28 (6) 311-314
  • 38 Fendri-Kriaa N, Louhichi N, Mkaouar-Rebai E , et al. The first genome-wide scan in a Tunisian family with generalized epilepsy with febrile seizure plus (GEFS+). J Child Neurol 2010; 25 (11) 1362-1368
  • 39 Belhedi N, Bena F, Mrabet A , et al. A new locus on chromosome 22q13.31 linked to recessive genetic epilepsy with febrile seizures plus (GEFS+) in a Tunisian consanguineous family. BMC Genet 2013; 14: 93
  • 40 Fendri-Kriaa N, Kammoun F, Rebai A , et al. Genetic screening of two Tunisian families with generalized epilepsy with febrile seizures plus. Eur J Neurol 2009; 16 (6) 697-704
  • 41 Goldin AL, Snutch T, Lübbert H , et al. Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci U S A 1986; 83 (19) 7503-7507
  • 42 Stogmann E, Lichtner P, Baumgartner C , et al. Idiopathic generalized epilepsy phenotypes associated with different EFHC1 mutations. Neurology 2006; 67 (11) 2029-2031
  • 43 Kleefuss-Lie A, Friedl W, Cichon S , et al. CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 2009; 41 (9) 954-955
  • 44 Wallace RH, Marini C, Petrou S , et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28 (1) 49-52
  • 45 Maljevic S, Krampfl K, Cobilanschi J , et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006; 59 (6) 983-987
  • 46 Urak L, Feucht M, Fathi N, Hornik K, Fuchs K. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 2006; 15 (16) 2533-2541
  • 47 Jouvenceau A, Eunson LH, Spauschus A , et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358 (9284) 801-807
  • 48 Chen Y, Lu J, Pan H , et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54 (2) 239-243
  • 49 Abouda H, Hizem Y, Gargouri A , et al. Familial form of typical childhood absence epilepsy in a consanguineous context. Epilepsia 2010; 51 (9) 1889-1893
  • 50 Genton P, Gelisse P, Thomas P. Juvenile myoclonic epilepsy today: current definitions and limits. In: Schmitz B, Sander T, , eds. Juvenile Myoclonic Epilepsy: The Janz Syndrome. Petersfield: Wrightson Biomedical Publishing; 2000: 11-32
  • 51 Herpin T. Des accès incomplets d'épilepsie. 1st ed. Paris: Baillère; 1867. (in French)
  • 52 Tissot SA. Traité de l'épilepsie. Lausanne: François Grasset et Comp; 1789. (in French)
  • 53 Janz D, Christian W. Impulsive petit mal. In: Malafosse A, Genton P, Hirsch E, Marescaux C, Broglin D, Bernasconi M, , eds. Idiopathic Generalized Epilepsies. London: John Libbey; 1994: 229-251
  • 54 Castells C, Mendilaharsu C. La epilepsia mioclónica bilateral y consciente. Acta Neurol Latinoam 1958; 4: 23-48 (in Spanish)
  • 55 Escayg A, De Waard M, Lee DD , et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66 (5) 1531-1539
  • 56 Kapoor A, Satishchandra P, Ratnapriya R , et al. An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene. Ann Neurol 2008; 64 (2) 158-167
  • 57 Cossette P, Liu L, Brisebois K , et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31 (2) 184-189
  • 58 Suzuki T, Delgado-Escueta AV, Aguan K , et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004; 36 (8) 842-849
  • 59 Panayiotopoulos CP, Obeid T. Juvenile myoclonic epilepsy: an autosomal recessive disease. Ann Neurol 1989; 25 (5) 440-443
  • 60 Layouni S, Salzmann A, Guipponi M , et al. Genetic linkage study of an autosomal recessive form of juvenile myoclonic epilepsy in a consanguineous Tunisian family. Epilepsy Res 2010; 90 (1-2) 33-38
  • 61 Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol 2005; 4 (4) 239-248
  • 62 Jorge CL, Valerio RMF. Epilepsias mioclônicas progressivas. In: Manreza ML, Grossmann RM, Vale'rio RM, Guilhoto LM, , eds. Epilepsiana Infância e Adolescência [in Portuguese]. Lemos Editorial, Sao Paulo; 2003: 171-188
  • 63 Pattison S, Pankarican M, Rupar CA, Graham FL, Igdoura SA. Five novel mutations in the lysosomal sialidase gene (NEU1) in type II sialidosis patients and assessment of their impact on enzyme activity and intracellular targeting using adenovirus-mediated expression. Hum Mutat 2004; 23 (1) 32-39
  • 64 Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 1991; 285 (2) 213-219
  • 65 Minassian BA. Progressive myoclonus epilepsy with polyglucosan bodies: Lafora disease. Adv Neurol 2002; 89: 199-210
  • 66 Gardiner RM. Clinical features and molecular genetic basis of the neuronal ceroid lipofuscinoses. Adv Neurol 2002; 89: 211-215
  • 67 DiMauro S, Hirano M, Kaufmann P , et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 2002; 89: 217-229
  • 68 Koide R, Ikeuchi T, Onodera O , et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6 (1) 9-13
  • 69 Tsuji S. Dentatorubral-pallidoluysian atrophy: clinical aspects and molecular genetics. Adv Neurol 2002; 89: 231-239
  • 70 Okino S. Familial benign myoclonus epilepsy of adult onset: a previously unrecognized myoclonic disorder. J Neurol Sci 1997; 145 (1) 113-118
  • 71 Inazuki G, Naito H, Ohama E , et al. A clinical study and neuropathological findings of a familial disease with myoclonus and epilepsy—the nosological place of familial essential myoclonus and epilepsy (FEME) [in Japanese]. Seishin Shinkeigaku Zasshi 1990; 92 (1) 1-21
  • 72 Sharifi S, Aronica E, Koelman JH, Tijssen MA, Van Rootselaar AF. Familial cortical myoclonic tremor with epilepsy and cerebellar changes: description of a new pathology case and review of the literature. Tremor Other Hyperkinet Mov (NY) 2012; . DOI: 10.7916/D8ST7NKK
  • 73 Guerrini R, Bonanni P, Patrignani A , et al. Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures: A newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2. Brain 2001; 124 (Pt 12): 2459-2475
  • 74 Depienne C, Magnin E, Bouteiller D , et al. Familial cortical myoclonic tremor with epilepsy: the third locus (FCMTE3) maps to 5p. Neurology 2010; 74 (24) 2000-2003
  • 75 Mikami M, Yasuda T, Terao A , et al. Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. Am J Hum Genet 1999; 65 (3) 745-751
  • 76 Yeetong P, Ausavarat S, Bhidayasiri R , et al. A newly identified locus for benign adult familial myoclonic epilepsy on chromosome 3q26.32-3q28. Eur J Hum Genet 2013; 21 (2) 225-228
  • 77 De Fusco M, Vago R, Striano P , et al. The α2B-adrenergic receptor is mutant in cortical myoclonus and epilepsy. Ann Neurol 2014; 75 (1) 77-87
  • 78 Stogmann E, Reinthaler E, Eltawil S , et al. Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2. Brain 2013; 136 (Pt 4) 1155-1160
  • 79 Poliak S, Peles E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 2003; 4 (12) 968-980
  • 80 Carr JA, van der Walt PE, Nakayama J , et al. FAME 3: a novel form of progressive myoclonus and epilepsy. Neurology 2007; 68 (17) 1382-1389
  • 81 Van Bogaert P, Azizieh R, Désir J , et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol 2007; 61 (6) 579-586
  • 82 Azizieh R, Orduz D, Van Bogaert P , et al. Progressive myoclonic epilepsy-associated gene KCTD7 is a regulator of potassium conductance in neurons. Mol Neurobiol 2011; 44 (1) 111-121
  • 83 Staropoli JF, Karaa A, Lim ET , et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet 2012; 91 (1) 202-208
  • 84 Kousi M, Anttila V, Schulz A , et al. Novel mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene. J Med Genet 2012; 49 (6) 391-399
  • 85 Ferlazzo E, Italiano D, An I , et al. Description of a family with a novel progressive myoclonus epilepsy and cognitive impairment. Mov Disord 2009; 24 (7) 1016-1022
  • 86 Strauss KA, Puffenberger EG, Huentelman MJ , et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 2006; 354 (13) 1370-1377
  • 87 Garofalo S, Cornacchione M, Di Costanzo A. From genetics to genomics of epilepsy. Neurol Res Int 2012; 2012: 876234
  • 88 Kullmann DM. Neurological channelopathies. Annu Rev Neurosci 2010; 33: 151-172
  • 89 Bar-Yosef O, Belfer-Cohen A. From Africa to Eurasia—early dispersals. Quat Int 2001; 75 (1) 19-28
  • 90 Lafrenière RG, Rochefort DL, Chrétien N , et al. Unstable insertion in the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nat Genet 1997; 15 (3) 298-302
  • 91 Minassian BA, Lee JR, Herbrick JA , et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 1998; 20 (2) 171-174
  • 92 Carpenter S, Karpati G. Sweat gland duct cells in Lafora disease: diagnosis by skin biopsy. Neurology 1981; 31 (12) 1564-1568
  • 93 Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012; 33 (1) 42-63
  • 94 Sharp JD, Wheeler RB, Lake BD , et al. Loci for classical and a variant late infantile neuronal ceroid lipofuscinosis map to chromosomes 11p15 and 15q21-23. Hum Mol Genet 1997; 6 (4) 591-595
  • 95 Savukoski M, Kestilä M, Williams R , et al. Defined chromosomal assignment of CLN5 demonstrates that at least four genetic loci are involved in the pathogenesis of human ceroid lipofuscinoses. Am J Hum Genet 1994; 55 (4) 695-701
  • 96 Järvelä IE, Mitchison HM, Callen DF , et al. Physical map of the region containing the gene for Batten disease (CLN3). Am J Med Genet 1995; 57 (2) 316-319
  • 97 Boehme DH, Cottrell JC, Leonberg SC, Zeman W. A dominant form of neuronal ceroid-lipofuscinosis. Brain 1971; 94 (4) 745-760
  • 98 Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990; 61 (6) 931-937
  • 99 Hirano M, DiMauro S. Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane RJM, , ed. Handbook of muscle disease. New York: Marcel Dekker Inc; 1996: 479-504
  • 100 Pshezhetsky AV, Richard C, Michaud L , et al. Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat Genet 1997; 15 (3) 316-320
  • 101 Palmeri S, Villanova M, Malandrini A , et al. Type I sialidosis: a clinical, biochemical and neuroradiological study. Eur Neurol 2000; 43 (2) 88-94