Journal of Pediatric Neurology 2015; 13(01): 011-015
DOI: 10.1055/s-0035-1555146
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Recent Insights on Pediatric Pseudotumor Cerebri Syndrome Pathophysiology: From the “Unifying Neuroendocrine Perspective” to the “Integrated Bioenergetic–Hormonal Mechanism”

Vincenzo Salpietro
1   Department of Pediatric Neurology, Chelsea and Westminster Hospital, Imperial College, London, United Kingdom
2   Department of Pediatrics, University of Messina, Messina, Italy
,
Martino Ruggieri
3   Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Daniela Concolino
4   Department of Pediatrics, Magna Graecia University, Catanzaro, Italy
,
Conrad E. Johanson
5   Department of Neurosurgery, Brown University, Providence, Rhode Island, United States
,
Karl T. Weber
6   Division of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, United States
› Author Affiliations
Further Information

Publication History

12 October 2014

02 January 2015

Publication Date:
13 July 2015 (online)

Abstract

Pseudotumor cerebri syndrome (PTCS) is a condition characterized by raised cerebrospinal fluid pressure in the setting of evidently normal brain parenchyma and stable composition of the cerebrospinal fluid. The pathophysiology of this syndrome is complex and not yet fully understood. Idiopathic intracranial hypertension (IIH), which is the primary (idiopathic) form of PTCS, generally affects adult obese females in their childbearing age. In children, PTCS is more commonly (compared with adults) associated with concomitant comorbidities (e.g., chronic medical conditions, endocrinopathies, treatment with tetracyclines, recombinant growth hormone, and thyroid supplementation). Together, these likely etiologic factors appear to lack a unifying pathophysiologic mechanism; however, the most recent research in this field is aiming to identify a common clue among most (if not all) secondary associations of pediatric PTCS. This has led in the last few years to a deeper understanding of the interplay among metabolic and endocrine derangements in PTCS, providing new insights into its pathophysiology.

 
  • References

  • 1 Soiberman U, Stolovitch C, Balcer LJ, Regenbogen M, Constantini S, Kesler A. Idiopathic intracranial hypertension in children: visual outcome and risk of recurrence. Childs Nerv Syst 2011; 27 (11) 1913-1918
  • 2 Radhakrishnan K, Ahlskog JE, Cross SA, Kurland LT, O'Fallon WM. Idiopathic intracranial hypertension (pseudotumor cerebri). Descriptive epidemiology in Rochester, Minn, 1976 to 1990. Arch Neurol 1993; 50 (1) 78-80
  • 3 Curry Jr WT, Butler WE, Barker II FG. Rapidly rising incidence of cerebrospinal fluid shunting procedures for idiopathic intracranial hypertension in the United States, 1988-2002. Neurosurgery 2005; 57 (1) 97-108 , discussion 97–108
  • 4 Salpietro V, Chimenz R, Arrigo T, Ruggieri M. Pediatric idiopathic intracranial hypertension and extreme childhood obesity: a role for weight gain. J Pediatr 2013; 162 (5) 1084
  • 5 McGeeney BE, Friedman DI. Pseudotumor cerebri pathophysiology. Headache 2014; 54 (3) 445-458
  • 6 Rangwala LM, Liu GT. Pediatric idiopathic intracranial hypertension. Surv Ophthalmol 2007; 52 (6) 597-617
  • 7 Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ. Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 1996; 46 (1) 198-202
  • 8 Salpietro V, Polizzi A, Di Rosa G , et al. Adrenal disorders and the paediatric brain: pathophysiological considerations and clinical implications. Int J Endocrinol 2014; 2014: 282489
  • 9 Salpietro V, Polizzi A, Bertè LF , et al. Idiopathic intracranial hypertension: a unifying neuroendocrine hypothesis through the adrenal-brain axis. Neuroendocrinol Lett 2012; 33 (6) 569-573
  • 10 Andrews LE, Liu GT, Ko MW. Idiopathic intracranial hypertension and obesity. Horm Res Paediatr 2014; 81 (4) 217-225
  • 11 Sheldon CA, Kwon YJ, Liu GT, McCormack SE. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics. Pediatr Res 2015; 77 (2) 282-289
  • 12 Owler BK, Higgins JN, Péna A, Carpenter TA, Pickard JD. Diffusion tensor imaging of benign intracranial hypertension: absence of cerebral oedema. Br J Neurosurg 2006; 20 (2) 79-81
  • 13 Quincke H. Meningitis serosa [in German]. Sammlung Klinischer Vorträge 1893; 67: 655
  • 14 Gjerris F, Børgesen SE. Current concepts of measurement of cerebrospinal fluid absorption and biomechanics of hydrocephalus. Adv Tech Stand Neurosurg 1992; 19: 145-177
  • 15 Johansson JO, Larson G, Andersson M , et al. Treatment of growth hormone-deficient adults with recombinant human growth hormone increases the concentration of growth hormone in the cerebrospinal fluid and affects neurotransmitters. Neuroendocrinology 1995; 61 (1) 57-66
  • 16 Rogers AH, Rogers GL, Bremer DL, McGregor ML. Pseudotumor cerebri in children receiving recombinant human growth hormone. Ophthalmology 1999; 106 (6) 1186-1189 , discussion 1189–1190
  • 17 Fishman RA. The pathophysiology of pseudotumor cerebri. An unsolved puzzle. Arch Neurol 1984; 41 (3) 257-258
  • 18 Donaldson JO. Cerebrospinal fluid hypersecretion in pseudotumor cerebri. Trans Am Neurol Assoc 1979; 104: 196-198
  • 19 Gideon P, Sørensen PS, Thomsen C, Ståhlberg F, Gjerris F, Henriksen O. Assessment of CSF dynamics and venous flow in the superior sagittal sinus by MRI in idiopathic intracranial hypertension: a preliminary study. Neuroradiology 1994; 36 (5) 350-354
  • 20 Malm J, Kristensen B, Markgren P, Ekstedt J. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology 1992; 42 (4) 851-858
  • 21 Orefice G, Celentano L, Scaglione M, Davoli M, Striano S. Radioisotopic cisternography in benign intracranial hypertension of young obese women. A seven-case study and pathogenetic suggestions. Acta Neurol (Napoli) 1992; 14 (1) 39-50
  • 22 Gasparian SS, Serova NK, Sherbakova EY, Belova TN. Compensatory mechanisms in patients with benign intracranial hypertension syndrome. Acta Neurochir Suppl (Wien) 2002; 81: 31-33
  • 23 Foley J. Benign forms of intracranial hypertension; toxic and otitic hydrocephalus. Brain 1955; 78 (1) 1-41
  • 24 Oldstone MB. Disturbance of pituitary-adrenal interrelationships in benign intracranial hypertension (pseudotumor cerebri). J Clin Endocrinol Metab 1966; 26 (12) 1366-1369
  • 25 Weber KT, Singh KD, Hey JC. Idiopathic intracranial hypertension with primary aldosteronism: report of 2 cases. Am J Med Sci 2002; 324 (1) 45-50
  • 26 Chitalia N, Weeg N, Antonios TF. Aldosterone-producing adrenal adenoma and idiopathic intracranial hypertension—a pathogenetic link for aldosterone?. QJM 2010; 103 (9) 699-702
  • 27 Salpietro V, Ruggieri M, Sancetta F , et al. New insights on the relationship between pseudotumor cerebri and secondary hyperaldosteronism in children. J Hypertens 2012; 30 (3) 629-630
  • 28 Weber KT. Aldosteronism revisited: perspectives on less well-recognized actions of aldosterone. J Lab Clin Med 2003; 142 (2) 71-82
  • 29 Salpietro V, Mankad K, Kinali M , et al. Pediatric idiopathic intracranial hypertension and the underlying endocrine-metabolic dysfunction: a pilot study. J Pediatr Endocrinol Metab 2014; 27 (1-2) 107-115
  • 30 Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 1978; 83: 3-34
  • 31 Salpietro V, Ruggieri M. Pseudotumor cerebri pathophysiology: the likely role of aldosterone. Headache 2014; 54 (7) 1229
  • 32 Khan MU, Khalid H, Salpietro V, Weber KT. Idiopathic intracranial hypertension associated with either primary or secondary aldosteronism. Am J Med Sci 2013; 346 (3) 194-198
  • 33 Sinclair AJ, Walker EA, Burdon MA , et al. Cerebrospinal fluid corticosteroid levels and cortisol metabolism in patients with idiopathic intracranial hypertension: a link between 11beta-HSD1 and intracranial pressure regulation?. J Clin Endocrinol Metab 2010; 95 (12) 5348-5356
  • 34 Kushida A, Tamura H. Retinoic acids induce neurosteroid biosynthesis in human glial GI-1 Cells via the induction of steroidogenic genes. J Biochem 2009; 146 (6) 917-923
  • 35 Sinclair AJ, Ball AK, Burdon MA , et al. Exploring the pathogenesis of IIH: an inflammatory perspective. J Neuroimmunol 2008; 201-202: 212-220
  • 36 Chirico V, Lacquaniti A, Salpietro V , et al. High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 2014; 173 (9) 1123-1136
  • 37 Lampl Y, Eshel Y, Kessler A , et al. Serum leptin level in women with idiopathic intracranial hypertension. J Neurol Neurosurg Psychiatry 2002; 72 (5) 642-643
  • 38 Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A , et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A 2003; 100 (24) 14211-14216
  • 39 Barton JS, Hindmarsh PC, Preece MA, Brook CG. Blood pressure and the renin-angiotensin-aldosterone system in children receiving recombinant human growth hormone. Clin Endocrinol (Oxf) 1993; 38 (3) 245-251
  • 40 Lampit M, Nave T, Hochberg Z. Water and sodium retention during short-term administration of growth hormone to short normal children. Horm Res 1998; 50 (2) 83-88
  • 41 Sinclair AJ, Viant MR, Ball AK , et al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool?. NMR Biomed 2010; 23 (2) 123-132
  • 42 Tokonami N, Morla L, Centeno G , et al. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J Clin Invest 2013; 123 (7) 3166-3171
  • 43 Wallace DC. Mitochondria as chi. Genetics 2008; 179 (2) 727-735
  • 44 Newgard CB, An J, Bain JR , et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9 (4) 311-326
  • 45 McCormack SE, Shaham O, McCarthy MA , et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 2013; 8 (1) 52-61
  • 46 Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol (Lausanne) 2012; 3: 22