Journal of Pediatric Epilepsy 2015; 04(01): 017-022
DOI: 10.1055/s-0035-1554787
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Clinical, Molecular, and Neurophysiological Features in Angelman Syndrome

Shinji Saitoh
1   Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
› Author Affiliations
Further Information

Publication History

08 September 2014

17 September 2014

Publication Date:
03 July 2015 (online)

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder associated with a unique type of epilepsy. AS is caused by loss of function of the ubiquitin protein ligase E3A (UBE3A) gene. Most cases of AS (70%) are caused by an approximate 5 Mb deletion in chromosome 15q11-q13 of the maternally derived allele; other causes include paternal uniparental disomy of chromosome 15 (5%), imprinting defects (5%), and UBE3A mutations (10%), with the genetic cause yet to be determined in the remaining 10% of cases. Many seizure types are present in AS, with myoclonic, absence, and tonic–clonic seizures being common. Characteristic findings of electroencephalography in AS include persistent rhythmic theta activity, anterior dominant rhythmic high-amplitude delta (2–3 Hz) activity or spikes and slow waves, and posterior dominant spikes and sharp waves mixed with 3 to 4 Hz high-amplitude slow waves. UBE3A has been shown to regulate both the glutamatergic and gamma-aminobutyric acidergic systems; further dissection of the molecular mechanisms of UBE3A action in mouse models and individuals with AS would facilitate a greater understanding of the pathophysiology of epilepsy.

 
  • References

  • 1 Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet Med 2010; 12 (7) 385-395
  • 2 Williams CA, Beaudet AL, Clayton-Smith J , et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 2006; 140 (5) 413-418
  • 3 Pelc K, Boyd SG, Cheron G, Dan B. Epilepsy in Angelman syndrome. Seizure 2008; 17 (3) 211-217
  • 4 Uemura N, Matsumoto A, Nakamura M , et al. Evolution of seizures and electroencephalographical findings in 23 cases of deletion type Angelman syndrome. Brain Dev 2005; 27 (5) 383-388
  • 5 Guerrini R, De Lorey TM, Bonanni P , et al. Cortical myoclonus in Angelman syndrome. Ann Neurol 1996; 40 (1) 39-48
  • 6 Goto M, Saito Y, Honda R , et al. Episodic tremors representing cortical myoclonus are characteristic in Angelman syndrome due to UBE3A mutations. Brain Dev 2015; 37 (2) 216-222
  • 7 Boyd SG, Harden A, Patton MA. The EEG in early diagnosis of the Angelman (happy puppet) syndrome. Eur J Pediatr 1988; 147 (5) 508-513
  • 8 Laan LA, Vein AA. Angelman syndrome: is there a characteristic EEG?. Brain Dev 2005; 27 (2) 80-87
  • 9 Leyser M, Penna PS, de Almeida AC, Vasconcelos MM, Nascimento OJ. Revisiting epilepsy and the electroencephalogram patterns in Angelman syndrome. Neurol Sci 2014; 35 (5) 701-705
  • 10 Egawa K, Asahina N, Shiraishi H , et al. Aberrant somatosensory-evoked responses imply GABAergic dysfunction in Angelman syndrome. Neuroimage 2008; 39 (2) 593-599
  • 11 Lossie AC, Whitney MM, Amidon D , et al. Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J Med Genet 2001; 38 (12) 834-845
  • 12 Saitoh S, Wada T, Okajima M, Takano K, Sudo A, Niikawa N. Uniparental disomy and imprinting defects in Japanese patients with Angelman syndrome. Brain Dev 2005; 27 (5) 389-391
  • 13 Minassian BA, DeLorey TM, Olsen RW , et al. Angelman syndrome: correlations between epilepsy phenotypes and genotypes. Ann Neurol 1998; 43 (4) 485-493
  • 14 Yamasaki K, Joh K, Ohta T , et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 2003; 12 (8) 837-847
  • 15 Greer PL, Hanayama R, Bloodgood BL , et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010; 140 (5) 704-716
  • 16 Egawa K, Kitagawa K, Inoue K , et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome. Sci Transl Med 2012; 4 (163) 163ra157
  • 17 Asahina N, Shiga T, Egawa K, Shiraishi H, Kohsaka S, Saitoh S. [(11)C]flumazenil positron emission tomography analyses of brain gamma-aminobutyric acid type A receptors in Angelman syndrome. J Pediatr 2008; 152 (4) 546-549 , 549.e1–549.e3
  • 18 Egawa K, Fukuda A. Pathophysiological power of improper tonic GABA(A) conductances in mature and immature models. Front Neural Circuits 2013; 7: 170
  • 19 DeLorey TM, Handforth A, Anagnostaras SG , et al. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 1998; 18 (20) 8505-8514
  • 20 Tanaka M, Olsen RW, Medina MT , et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008; 82 (6) 1249-1261
  • 21 Tanaka M, DeLorey TM, Delgado-Escueta A, Olsen RW. GABRB3, epilepsy, and neurodevelopment. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, , eds. Jasper's Basic Mechanisms of the Epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information (US); 2012: 1-15
  • 22 Sugiura C, Ogura K, Ueno M, Toyoshima M, Oka A. High-dose ethosuximide for epilepsy in Angelman syndrome: implication of GABA(A) receptor subunit. Neurology 2001; 57 (8) 1518-1519
  • 23 Franz DN, Glauser TA, Tudor C, Williams S. Topiramate therapy of epilepsy associated with Angelman's syndrome. Neurology 2000; 54 (5) 1185-1188
  • 24 Dion MH, Novotny Jr EJ, Carmant L, Cossette P, Nguyen DK. Lamotrigine therapy of epilepsy with Angelman's syndrome. Epilepsia 2007; 48 (3) 593-596
  • 25 Weber P. Levetiracetam in nonconvulsive status epilepticus in a child with Angelman syndrome. J Child Neurol 2010; 25 (3) 393-396