Ultraschall Med 2015; 36(04): 375-380
DOI: 10.1055/s-0035-1553321
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Normal Doppler Reference Values of the Pericallosal Artery

Doppler-Normwerte für die fetale Arteria pericallosa
S. Pashaj
1   Ultrasound Department, Maternity Hospital `Koco Gliozheni`, Tirana, Albania
,
E. Merz
2   Centre for Prenatal Diagnosis and Therapy, Krankenhaus Nordwest, Frankfurt am Main, Germany
,
S. Wellek
3   Department of Medical Biostatistics, Epidemiology and Informatics of Johannes Gutenberg-University, Mainz, Germany
› Author Affiliations
Further Information

Publication History

16 November 2014

17 May 2015

Publication Date:
04 August 2015 (online)

Abstract

Purpose: To provide the normal reference values of the Doppler flow of the pericallosal artery in relation to gestational age from 18 to 41 weeks of gestation.

Materials and Methods: The pericallosal artery (PCA) was studied in 466 normal pregnancies. The pulsed Doppler evaluation of the pericallosal artery was done in A3 and A4 segments, and records from PI, RI and Vmax were studied.

Results: The resistance index of the pericallosal artery in A3 / A4 segments exhibits a plateau from 18 to 31 weeks of gestation. After 31 weeks, a marked decrease becomes apparent. The pulsatility index of the pericallosal artery in A3 / A4 segments shows a plateau until 36 weeks of gestation. During the final weeks of gestation, there is a decrease in the pulsatility index. Vmax exhibits a plateau for the maximal flow velocity in A3 / A4 segments of the pericallosal artery from 18 to 28 weeks of gestation. After 28 weeks of gestation, there is a slight increase in Vmax.

Conclusion: Normal reference values of the pericallosal artery might have an impact on clinical judgment during adaptive hemodynamic changes and regarding the progression of the fetal deterioration occurring in the presence of fetal hypoxia.

Zusammenfassung

Ziel: Ziel dieser Studie war es, Dopplerfluss-Normwerte der A. pericallosa in Abhängigkeit vom Gestationsalter zwischen 18 und 41 Schwangerschaftswochen (SSW) zu erstellen.

Material und Methoden: Die A. pericallosa (PCA) wurde mit gepulstem Doppler bei 466 normalen Feten im Rahmen einer prospektiven Querschnittstudie untersucht. Die Messungen erfolgten in den A3- und A4-Segmenten der A. pericallosa, wobei die Parameter Resistance-Index (RI), Pulsatilitäts-Index (PI) und maximale Geschwindigkeit (Vmax) erfasst wurden.

Ergebnisse: Der RI der A. pericallosa zeigt in den A3/A4-Segmenten ein Plateau zwischen 18 und 31 SSW. Nach 31 SSW erkennt man einen deutlichen Abfall. Der PI der A. pericallosa weist in den A3/A4-Segmenten ein Plateau bis 36 SSW auf. Danach kommt es ebenfalls zu einem Abfall. Die Vmax zeigt in den A3/A4-Segmenten ein Plateau von 18 bis 28 SSW. Nach 28 SSW erkennt man einen leichten Anstieg der Vmax-Werte.

Schlussfolgerung: Die Normkurven von RI, PI und Vmax der A. pericallosa ergeben neben der A. cerebri media eine weitere Möglichkeit, adaptive hämodynamische Veränderungen im Gehirn zu erkennen. Inwieweit die Butflusssmessungen in der A. pericallosa eine Rolle in der frühzeitigen Erkennung einer fetalen Hypoxie spielen wird, müssen weitere Studien zeigen.

 
  • References

  • 1 Patti M, Cani C, Bertucci E et al. Early visualization and measurement of the pericallosa artery. JUM 2012; 31: 231-237
  • 2 Lazorthes G, Gouazé A, Salamon D. Vascularisation et Circulation de l’Encéphale. Anatomie Descriptive et Fonctionnelle. 1. Paris: Masson; 1976: 101-113
  • 3 Kakou M, Destrieux C, Velut S. Microanatomy of the pericallosal arterial complex. J Neurosurg 2000; 93: 667-675
  • 4 Fischer E. Die Lageabweichungen der vorderen Hirnarterie im Gefässbild. Zentralbl Neurochir 1938; 3: 300-312
  • 5 Pashaj S, Merz E. Prenatal demonstration of the normal variants of the pericallosal artery by 3D ultrasound. Ultraschall in Med 2013;
  • 6 Benavides-Serralde A, Hernandez-Andrade E, Figueroa-Diesel H et al. Reference values for Doppler parameters of the fetal anterior cerebral artery throughout gestation. Gynecol Obst Invest 2010; 69: 33-39 DOI: 10.1159/000253847.
  • 7 Figueroa-Diesel H, Hernandez-Andrade E, Acosta-Rojas R et al. Doppler changes in the main fetal brain arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction. Ultrasound Obstet Gynecol 2007; 30: 297-302
  • 8 Dubiel M, Gunnarsoon GO, Gudmundsson S. Blood redistribution in the fetal brain during chronic hypoxia. Ultrasound Obstet Gynecol 2002; 20: 117-121
  • 9 Wellek S, Merz E. Age-related references ranges for growth parameters. Meth Inform Med 1995; 34: 523-528
  • 10 Pashaj S, Merz E, Wellek S. Biometric measurements of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2013; 42: 691-698 DOI: 10.1002/uog.12501.
  • 11 Arbeile P, Patat F, Tranquart F et al. Doppler examination of the umbilical and cerebral arterial circulation of the fetus. J Gynecol Obstet Biol Reprod 1987; 16: 45-51
  • 12 Reuwer PJ, Sijmons EA, Rietman GW et al. Intrauterine growth retardation: prediction of perinatal distress by Doppler ultrasound. Lancet 1987; 2: 415-418
  • 13 Marsál K, Persson PH. Ultrasonic measurement of fetal blood velocity wave form as a secondary diagnostic test in screening for intrauterine growth retardation. J Clin Ultrasound 1988; 16: 239-244
  • 14 Gagnon R. Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol 2003; 110: S99-S107
  • 15 Van den Wijngaarg JA, Groenenberg IA, Wladimiroff JW et al. Cerebral Doppler ultrasound of the human fetus. Br J Obstet Gynaecol 1989; 96: 845-849
  • 16 Noordam MJ, Heydanus R, Hop WC et al. Doppler colour flow imageing of fetal intracerebral arteries and umbilical artery in the small for gestational age fetus. Br J Obstet Gynaecol 1994; 101: 504-508
  • 17 Rosa SJ, Steegers EA, Verburg BO et al. What is spread by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population. Am J Epidemiol 2008; 168: 1145-1152
  • 18 Fu J, Olofsson P. Intracerebral regional distribution of blood flow in response to uterine contractions in growth-restricted human fetuses. Early Hum Dev 2007; 83: 607-612
  • 19 Bird CM, Castelli F, Malik O et al. The impact of extensive medial frontal lobe damage on “Theory of mind” and cognition. Brain 2004; 127: 914-928
  • 20 Rees S, Inder T. Fetal and neonatal origins of altered brain development. Early Human Development 2005; 81: 753-761
  • 21 Marsal K, Ley D. Intrauterin blood flow and postnatal neurological development in growth-retarded fetuses. Biol Neonate 1992; 62: 258-264
  • 22 Hellstrom A, Dahlgren J, Marsal K et al. Abnormal retinal vascular morphology in young adults following intrauterine growth restriction. Pediatrics 2004; 113: e77-e80
  • 23 Patt S, Sampaolo S, Theallier-Janko A et al. Cerebral angiogenesis triggered by severe chronic hypoxia displays regional differences. J Cereb Blood Flow Metab 1997; 17: 801-806
  • 24 Hilario E, Rey-Santano MC, Goni-de-Cerio F et al. Cerebral blood flow and morphological changes after hypoxic-ischaemic injury in preterm lambs. Acta Paediatr 2005; 94: 903-911
  • 25 Low JA. Cerebral perfusion, metabolism, and outcome. Curr Opin Pediatr 1995; 7: 132-139
  • 26 Benavides-Serralde A, Scheier M, Cruz-Martinez R et al. Changes in central and peripheral circulation in intrauterine growth-restricted fetuses at different stages of umbilical artery flow deterioration: new fetal cardiac and brain parameters. Gynecol Obstet Invest 2011; 71: 274-280 DOI: 10.1159/000323548. Epub 2011 Feb 24.
  • 27 Scherjon SA, OOsting H, Smolders-DeHaas H et al. Neurodevelopmental outcome at three years of age after fetal; brain sparing`. Early Hum Dev 1998; 52: 67-79