Drug Res (Stuttg) 2016; 66(03): 121-125
DOI: 10.1055/s-0035-1550042
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Cytotoxic Potential and Molecular Characterization of Fungal Endophytes from Selected High Value Medicinal Plants of the Kashmir Valley – India

R. A. Dar
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
P. H. Qazi
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
I. Saba
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
S. A. Rather
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
Z. A. Wani
2   Cancer Pharmacology Division, CSIR – Indian Institute of Integrative Medicine, Jammu – Tawi, India
,
A. K. Qazi
2   Cancer Pharmacology Division, CSIR – Indian Institute of Integrative Medicine, Jammu – Tawi, India
,
A. A. Shiekh
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
A. Manzoor
1   Biotechnology Division, CSIR – Indian Institute of Integrative Medicine, Sanatnagar – Srinagar, Kashmir, India
,
A. Hamid
2   Cancer Pharmacology Division, CSIR – Indian Institute of Integrative Medicine, Jammu – Tawi, India
,
D. M. Modae
2   Cancer Pharmacology Division, CSIR – Indian Institute of Integrative Medicine, Jammu – Tawi, India
› Author Affiliations
Further Information

Publication History

received 28 December 2014

accepted 05 May 2015

Publication Date:
26 May 2015 (online)

Abstract

The present study explores the fungal endophytes from selected high value medicinal plants to check their activities at in-vitro and in-vivo level. The in-vitro cytotoxicity of selected endophytes revealed potent growth inhibition against human cancer cell lines of leukemia (THP-1), lung (A549), prostate (PC-3), colon (Caco-2), neuroblastoma (IMR-32) and breast (MCF-7) at a concentration of 100 µg/ml. Among them the endophytic strains i. e., IIIM2, IIIM3, IIIM7 and IIIM8 showed most significant growth inhibition against colon (Caco-2), prostate (PC-3), lung (A549) and leukemia (THP-1) cancer cell lines. At the in-vivo level maximum (58.95%) tumor growth inhibition was documented with the extract of IIIM2 against Ehrlich Ascites Carcinoma mouse modal. All the potent fungal endophytic strains were characterized using ITS 4 and ITS 5 region sequencing and phylogenetic analysis was ascertained among them. This paper confirms the 2 elite endophytic fungal strains, IIIM2 and IIIM8, have the potential to act as a source of new anticancer compounds.

 
  • References

  • 1 Petrini O. Fungal endophyte of tree leaves. In: Andrews J, Hirano SS. (eds.) Microbial ecology of leaves. New York: Springer; 1992: 179-197
  • 2 Strobel G, David L. Endophytic microbes embody pharmaceutical potential. ASM News 1998; 64: 263-268
  • 3 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces, an endophytic fungus of pacific yew (Taxus brevifolia). Sci 1993; 260: 214-216
  • 4 Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G. The search for a taxol producing microorganism among the endophytic fungi of the pacific yew, Taxus brevifolia. J Nat Prod 1995; 58: 1315-1324
  • 5 Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxusmairei. FEMS Microbiol Lett 2000; 193: 249-253
  • 6 Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003; 67: 491-502
  • 7 Huang Y, Cai Z, Hyde D, Corke H, Sun M. Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Div 2008; 33: 61-75
  • 8 Rosa H, Gonçalves N, Caligiorne B, Alves A, Rabello A, Sales A, Romanha J, Sobral G, Rosa A, Zani L. Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil. Braz J Microbiol 2010; 41: 114-122
  • 9 Vieira A, Hughes S, Gil B, Vaz M, Alves A, Zani L, Rosa A, Rosa H. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 2012; 58: 1-13
  • 10 Schulz B, Boyle C, Draeger S, Römmert A, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 2002; 106: 996-1004
  • 11 Strobel GA, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003; 67: 491-502
  • 12 Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001; 18: 448-459
  • 13 Maheswari S, Rajagopal K. Biodiversity of endophytic fungi in Kigelia pinnata during two different Seasons. Curr Sci 2013; 104: 515-518
  • 14 Dar RA, Rather SA, Mushtaq S, Qazi PH. Purification and characterization of endophytic fungal strains from four different high value medicinal plants of Kashmir valley. Intnl J Phytopharm 2015; 5: 8-11
  • 15 Houghton P, Fang R, Techatanawat I, Stevanton G, Hylands I. The sulpharhodamine assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Method 2007; 42: 377-387
  • 16 Ausubel M, Brent R, Kingston E, Moore D, Seidman G, Smith A, Struhl K. Current protocols in molecular biology. New York: Greene Publishing Association; Wiley-Interscience; 1994: 1
  • 17 Jia B, Gareth J, Zhi S, Ji P. Review of bioactive compounds from fungi in the South China Sea. Botan Mar 2008; 51: 179-190
  • 18 Schutz B. Endophytic fungi: a source of novel biologically active secondary metabolites. British Mycological Society, International Symposium Proceedings. Bioactive Fungal Metabolites–Impact and Exploitation. University of Wales, Swansea 2001;
  • 19 Huang Y, Cai Z, Hyde D, Corke H, Sun M. Biodiversity of endophytic fungi associated with 29 traditional chinese medicinal plants. Fungal Div 2008; 33: 61-75
  • 20 Jing X, Ueki N, Cheng J, Imanishi H, Hada T. Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 2002; 93: 874-882
  • 21 Zhang L, Lau K, Xia W, Hortobagyi N, Hung C. Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Can Res 1999; 5: 343-353
  • 22 Jian F, Jie Z, Jian S, Jian X, Li H, Adrian Y, Wings L, Louis C, Elizabeth N. Emodin affects ERCC1 expression in breast cancer cells. J Transl Med 2012; 10: S7
  • 23 Lu M, Chen H. Biochemical study of Chinese rhubarb. XXIX. Inhibitory effects of anthraquinone on P388 leukemia in mice. J China Pharmacol Univ 1989; 20: 155-157
  • 24 Oshio H, Kawamura N. Determination of the laxative compounds in rhubarb by high performance liquid chromatography. Shoyakugaku Zasshi 1985; 39: 131-138
  • 25 Zhou M, Chen H. Biochemical study of Chinese rhubarb. XXII. Inhibitory effect of anthraquinone derivatives on sodium-potassium-ATPase of rabbit renal medulla and their diuretic action. Acta Pharm Sinic 1988; 23: 17-20
  • 26 Rajkumar V, Guha G, Ashok R. Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. eCAM Advance Access published May 3 2010;
  • 27 Zhongmei H, Yudan T, Xiantao Z, Bai B, Lianxue Z, Huaisheng W, Wenjie Z. Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Nat Prod Res 2012; 1: 1-4
  • 28 Chen S, Shih W, Huang C, Cheng W. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression. PLoS One 2011; 6: e20164
  • 29 Bills F, Polishook D. Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 1992; 44: 1-12
  • 30 Rodriques F, Petrini O. Biodiversity of endophytic fungi in tropical regions. In: Hyde KD. (ed.) Biodiversity of tropical fungi. Hong Kong University Press; 1997: 57-69
  • 31 Stroble G. Endophytes as source of bioactive products. Microb and infect 2003; 5: 534-544
  • 32 Stadler M, Hellwig V. Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res. Dev. Phytochem 2005; 9: 41-93
  • 33 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces, an endophytic fungus of pacific yew (Taxus brevifolia). Sci 1993; 260: 214-216
  • 34 Strobel G, Torczynski R, Bollon A. Acremonium sp. a leucinostain A producing endophyte of Europen yew (Taxus baccata). Plant Sci 1997; 128: 97-108
  • 35 Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microb Mol Biol Rev 2003; 67: 491-502