Planta Med 2015; 81(15): 1309-1325
DOI: 10.1055/s-0035-1546055
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Anti-infective Natural Products from Cyanobacteria

Timo Horst Johannes Niedermeyer
German Center for Infection Research (DZIF), Partner Site Tübingen and University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
› Author Affiliations
Further Information

Publication History

received 23 January 2015
revised 16 March 2015

accepted 13 April 2015

Publication Date:
17 June 2015 (online)

Abstract

Cyanobacteria are a promising yet underexplored source for novel natural products with potent biological activities. While predominantly cytotoxic compounds have been isolated from cyanobacteria in the past, there are also a significant number of compounds known that possess anti-infective activities. As the need for novel anti-infective lead compounds is high, this manuscript aims at giving a concise overview on the current knowledge about anti-infective secondary metabolites isolated from cyanobacteria. Antibacterial, antifungal, antiviral, antiprotozoal, and molluscicidal activities are discussed. Covering up to February 2015.

 
  • References

  • 1 Hayes GW, Keating CL, Newman JS. The golden anniversary of the silver bullet. JAMA 1993; 270: 1610-1611
  • 2 Kardos N, Demain AL. Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 2011; 92: 677-687
  • 3 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
  • 4 Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nature 2011; 472: 32
  • 5 Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009; 48: 1-12
  • 6 Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, Cars O. ECDC-EMA Working Group. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist Updat 2011; 14: 118-124
  • 7 ECDC/EMEA. ECDC/EMEA Joint Technical Report. The bacterial challenge: time to react. Stockholm: ECDC/EMEA; 2009
  • 8 The White House. National strategy for combating antibiotic-resistant bacteria. Washington: The White House; 2014
  • 9 World Health Organization. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization; 2014
  • 10 Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod 2004; 67: 2141-2153
  • 11 Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13: 894-901
  • 12 Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery?. J Med Chem 2008; 51: 2589-2599
  • 13 van Apeldoorn ME, van Egmond HP, Speijers GJA, Bakker GJI. Toxins of cyanobacteria. Mol Nutr Food Res 2007; 51: 7-60
  • 14 Pegram RA, Humpage AR, Neilan BA, Runnegar MT, Nichols T, Thacker RW, Pflugmacher S, Etherodge SM, Love AH. Cyanotoxins Workgroup report. Adv Exp Med Biol 2008; 619: 317-381
  • 15 Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 2010; 8: 1650-1680
  • 16 Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria – a prolific source of natural products. Tetrahedron 2001; 57: 9347-9377
  • 17 Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007; 68: 954-979
  • 18 Gademann K. Out in the green: biologically active metabolites produced by cyanobacteria. Chimia 2011; 65: 416-419
  • 19 Gademann K, Portmann C. Secondary Metabolites from Cyanobacteria: Complex Structures and Powerful Bioactivities. Curr Org Chem 2008; 12: 326-341
  • 20 Tan LT. Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 2010; 22: 659-676
  • 21 Tidgewell K, Clark BR, Gerwick WH. The natural products chemistry of cyanobacteria. In: Mander L, Liu HW, editors Comprehensive natural products II: chemistry and biology. Oxford: Elsevier; 2010: 141-188
  • 22 Niedermeyer T, Brönstrup M. Natural-product drug discovery from microalgae. In: Posten C, Walter C, editors Microalgal biotechnology: integration and economy. Berlin, Boston: de Gruyter; 2012: 169-200
  • 23 Salvador-Reyes LA, Luesch H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 2015; 32: 478-503
  • 24 Jaspars M, Lawton LA. Cyanobacteria – a novel source of pharmaceuticals. Curr Opin Drug Discov Devel 1998; 1: 77-84
  • 25 Dictionary of Natural Products on DVD. London: Taylor & Francis Group; 2013
  • 26 Schopf JW, Packer BM. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 1987; 237: 70-73
  • 27 Whitton BA, Potts M. The ecology of cyanobacteria: their diversity in time and space. Dordrecht: Springer; 2000
  • 28 Nagle DG, Paul VJ. Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 1999; 35: 1412-1421
  • 29 Berry JP, Gantar M, Perez MH, Berry G, Noriega FG. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 2008; 6: 117-146
  • 30 Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L. Total Structures of Cryptophycins, Potent Antitumor Depsipeptides from the Blue-Green Alga Nostoc sp. Strain GSV 224. J Am Chem Soc 1994; 116: 4729-4737
  • 31 Panda D, Himes RH, Moore RE, Wilson L, Jordan MA. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 1997; 36: 12948-12953
  • 32 Rohr J. Cryptophycin anticancer drugs revisited. ACS Chem Biol 2006; 1: 747-750
  • 33 Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyi L, Tomer KB, Bontemps RJ. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 1987; 109: 6883-6885
  • 34 Flahive E, Srirangam J. The dolastatins: novel antitumor agents from Dolabella auricularia . In: Kingston D, Cragg G, Newman D, editors Anticancer agents from natural products. Boca Raton: CRC Press; 2005: 191-214
  • 35 Guyot M, Doré JC, Devillers J. Typology of secondary cyanobacterial metabolites from minimum spanning tree analysis. SAR QSAR Environ Res 2004; 15: 101-114
  • 36 Welker M, von Döhren H. Cyanobacterial peptides – natureʼs own combinatorial biosynthesis. FEMS Microbiol Rev 2006; 30: 530-563
  • 37 Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman H, Gerwick WH. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 2010; 27: 1048-1065
  • 38 Dittmann E, Neilan BA, Börner T. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol 2001; 57: 467-473
  • 39 Schwarzer D, Finking R, Marahiel MA. Nonribosomal peptides: from genes to products. Nat Prod Rep 2003; 20: 275-287
  • 40 Challis GL, Naismith JH. Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol 2004; 14: 748-756
  • 41 Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 2004; 58: 453-488
  • 42 Barrios-llerena ME, Burja AM, Wright PC. Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 2007; 34: 443-456
  • 43 Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH. New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 2009; 13: 216-223
  • 44 Kalaitzis JA, Lauro FM, Neilan BA. Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 2009; 26: 1447-1465
  • 45 Marahiel MA. Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 2009; 15: 799-807
  • 46 Rath CM, Scaglione JB, Kittendorf JD, Sherman DH. NRPS/PKS hybrid enzymes and their natural products. In: Mander L, Liu HW, editors Comprehensive natural products II: chemistry and biology. Oxford: Elsevier; 2010: 453-492
  • 47 Strieker M, Tanović A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 2010; 20: 234-240
  • 48 Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew Chem Int Ed Engl 2008; 47: 7756-7759
  • 49 Donia MS, Schmidt EW. Cyanobactins – ubiquitous cyanobacterial ribosomal peptide metabolites. In: Mander L, Liu HW, editors comprehensive natural products II: chemistry and biology. Oxford: Elsevier; 2010: 14-17
  • 50 Sivonen K, Leikoski N, Fewer DP, Jokela J. Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 2010; 86: 1213-1225
  • 51 Hershberger SJ, Lee SG, Chmielewski J. Scaffolds for blocking protein-protein interactions. Curr Top Med Chem 2007; 7: 928-942
  • 52 Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery–an underexploited structural class. Nat Rev Drug Discov 2008; 7: 608-624
  • 53 Gerwick WH, Coates RC, Engene N, Gerwick L, Grindberg RV, Jones AC, Sorrels CM. Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 2008; 3: 277-284
  • 54 Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 2012; 62: 1171-1178
  • 55 Shimizu Y. Microalgal metabolites. Curr Opin Microbiol 2003; 6: 236-243
  • 56 Liu L, Rein KS. New peptides isolated from Lyngbya species: a review. Mar Drugs 2010; 8: 1817-1837
  • 57 Niedermeyer THJ. Microcystin congeners described in the literature. December 19, 2013. DOI: 10.6084/m9.figshare.880756
  • 58 Kehr JC, Picchi DG, Dittmann E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J Org Chem 2011; 7: 1622-1635
  • 59 Sielaff H, Christiansen G, Schwecke T. Natural products from cyanobacteria: Exploiting a new source for drug discovery. IDrugs 2006; 9: 119-127
  • 60 Zhang W, Tang Y. Combinatorial biosynthesis of natural products. J Med Chem 2008; 51: 2629-2633
  • 61 Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 2001; 70: 85-106
  • 62 Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009; 109: 3012-3043
  • 63 Olaizola M. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 2003; 20: 459-466
  • 64 Cardllina 2nd JH, Moore RE, Arnold EV, Clardy J. Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont. J Org Chem 1979; 44: 4039-4042
  • 65 Kozikowski AP, Nieduzak TR, Scripko J. Hydroxymercuration-reductive coupling route to delta-lactones. Synthesis of malyngollde, an antibiotic from a marine blue-green alga. Organometallics 1982; 1: 675-676
  • 66 Cardillo G, Orena M, Porzi G, Sandri S. Synthesis of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont. J Org Chem 1981; 46: 2439-2442
  • 67 Sakito Y, Tanaka S, Asami M, Mukiyama T. An asymmetric total synthesis of a new marine antibiotic-malyngolide. Chem Lett 1980; 9: 1223-1226
  • 68 Moore RE, Cheuk C, Patterson GML. Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis . J Am Chem Soc 1984; 106: 6456-6457
  • 69 Moore RE, Cheuk C, Yang XQG, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK, Deeter JB. Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis . J Org Chem 1987; 52: 1036-1043
  • 70 Klein D, Daloze D, Braekman JC, Hoffmann L, Demoulin V. New apalindoles from the cyanophyte Hapalosiphon laingii . J Nat Prod 1995; 58: 1781-1785
  • 71 Asthana RK, Srivastava A, Singh AP, Singh SP, Nath G, Srivastava R, Srivastava BS. Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J Appl Phycol 2006; 18: 33-39
  • 72 Kim H, Lantvit D, Hwang CH, Kroll DJ, Swanson SM, Franzblau SG, Orjala J. Indole alkaloids from two cultured cyanobacteria, Westiellopsis sp. and Fischerella muscicola . Bioorg Med Chem 2012; 20: 5290-5295
  • 73 Bonjouklian R, Moore RE, Mynderse JS, Patterson GML, Smitka TA. Hapalindoles. US Patent 4870185, 1989
  • 74 Becher PG, Keller S, Jung G, Süssmuth RD, Jüttner F. Insecticidal activity of 12-epi-hapalindole J isonitrile. Phytochemistry 2007; 68: 2493-2497
  • 75 Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR, Jüttner F, Botana LM. Hapalindoles from the cyanobacterium fischerella: potential sodium channel modulators. Chem Res Toxicol 2014; 27: 1696-1706
  • 76 Raveh A, Carmeli S. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J Nat Prod 2007; 70: 196-201
  • 77 Mo S, Krunic A, Chlipala G, Orjala J. Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella ambigua . J Nat Prod 2009; 72: 894-899
  • 78 Jaki B, Orjala J, Sticher O. A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune . J Nat Prod 1999; 62: 502-503
  • 79 Jaki B, Heilmann J, Sticher O. New antibacterial netabolites from the cyanobacterium Nostoc communem (EAWAG 122b). J Nat Prod 2000; 63: 1283-1285
  • 80 Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune . J Nat Prod 2000; 63: 339-343
  • 81 Mo S, Krunic A, Pegan SD, Franzblau SG, Orjala J. An antimicrobial guanidine-bearing sesterterpene from the cultured cyanobacterium Scytonema sp. J Nat Prod 2009; 72: 2043-2045
  • 82 Espinoza-Moraga M, Njuguna NM, Mugumbate G, Caballero J, Chibale K. In silico comparison of antimycobacterial natural products with known antituberculosis drugs. J Chem Inf Model 2013; 53: 649-660
  • 83 Sturdy M, Krunic A, Cho S, Franzblau S, Orjala J. Eucapsitrione, an anti-Mycobacterium tuberculosis anthraquinone derivative from the cultured freshwater cyanobacterium Eucapsis sp. J Nat Prod 2010; 73: 1441-1443
  • 84 Becher PG, Beuchat J, Gademann K, Jüttner F. Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 2005; 68: 1793-1795
  • 85 Blom JF, Brütsch T, Barbaras D, Bethuel Y, Locher HH, Hubschwerlen C, Gademann K. Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org Lett 2006; 8: 737-740
  • 86 Bonazzi S, Barbaras D, Patiny L, Scopelliti R, Schneider P, Cole ST, Kaiser M, Brun R, Gademann K. Antimalarial and antitubercular nostocarboline and eudistomin derivatives: synthesis, in vitro and in vivo biological evaluation. Bioorg Med Chem 2010; 18: 1464-1476
  • 87 Locher HH, Ritz D, Pfaff P, Gaertner M, Knezevic A, Sabato D, Schroeder S, Barbaras D, Gademann K. Dimers of nostocarboline with potent antibacterial activity. Chemotherapy 2010; 56: 318-324
  • 88 Raveh A, Carmeli S. Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp. Org Lett 2010; 12: 3536-3539
  • 89 Bruno P, Pena S, Just-Baringo X, Albericio F, Alvarez M. Total synthesis of aeruginazole A. Org Lett 2011; 13: 4648-4651
  • 90 Falch BS, Konig GM, Wright AD, Sticher O, Rüegger H, Bernardinelli G. Ambigol A and B: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua . J Org Chem 1993; 58: 6570-6575
  • 91 Wright AD, Papendorf O, König GM. Ambigol C and 2, 4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua . J Nat Prod 2005; 68: 459-461
  • 92 Volk RB, Girreser U, Al-Refai M, Laatsch H. Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta . Nat Prod Res 2009; 23: 607-612
  • 93 Bui HTN, Jansen R, Pham HTL, Mundt S. Carbamidocyclophanes A–E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 2007; 70: 499-503
  • 94 Luo S, Kang HS, Krunic A, Chlipala GE, Cai G, Chen WL, Franzblau SG, Swanson SM, Orjala J. Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedron Lett 2014; 55: 686-689
  • 95 Preisitsch M, Harmrolfs K, Pham HT, Heiden SE, Füssel A, Wiesner C, Pretsch A, Swiatecka-Hagenbruch M, Niedermeyer THJ, Müller R, Mundt S. Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J Antibiot 2014; 68: 165-177
  • 96 Soares AR, Engene N, Gunasekera SP, Sneed JM, Paul VJ. Carriebowlinol, an antimicrobial tetrahydroquinolinol from an assemblage of marine cyanobacteria containing a novel taxon. J Nat Prod 2015; 78: 534-538
  • 97 Jaki B, Orjala J, Sticher O. A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune . J Nat Prod 1999; 62: 502-503
  • 98 Choi H, Engene N, Smith JE, Preskitt LB, Gerwick WH. Crossbyanols A–D, toxic brominated polyphenyl ethers from the Hawaiʼian bloom-forming Cyanobacterium Leptolyngbya crossbyana . J Nat Prod 2010; 73: 517-522
  • 99 Mundt S, Kreitlow S, Jansen R. Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 2003; 15: 263-267
  • 100 Doan NT, Rickards RW, Rothschild JM, Smith GD, Thanh Doan N. Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix . J Appl Phycol 2000; 12: 409-416
  • 101 Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA. Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 2004; 16: 237-243
  • 102 Ishida K, Matsuda H, Murakami M, Yamaguchi K. Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa . J Nat Prod 1997; 60: 724-726
  • 103 Zainuddin EN, Jansen R, Nimtz M, Wray V, Preisitsch M, Lalk M, Mundt S. Lyngbyazothrins A–D, antimicrobial cyclic undecapeptides from the cultured Cyanobacterium lyngbya sp. J Nat Prod 2009; 72: 1373-1378
  • 104 Zi J, Lantvit DD, Swanson SM, Orjala J. Lyngbyaureidamides A and B, two anabaenopeptins from the cultured freshwater cyanobacterium Lyngbya sp. (SAG 36.91). Phytochemistry 2012; 74: 173-177
  • 105 Leão PN, Pereira AR, Liu WT, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconvelos VM, Gerwick WH. Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci U S A 2010; 107: 11183-11188
  • 106 Gerwick WH, Reyes S, Alvarado B. Two malyngamides from the caribbean cyanobacterium Lyngbya majuscula . Phytochemistry 1987; 26: 1701-1704
  • 107 Gunasekera SP, Owle CS, Montaser R, Luesch H, Paul VJ. Malyngamide 3 and cocosamides A and B from the marine cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam. J Nat Prod 2011; 74: 871-876
  • 108 Thacker RW, Nagle DG, Paul VJ. Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar Ecol Prog Ser 1997; 147: 21-29
  • 109 Nagatsu A, Kajitani H, Sakakibara J. Muscoride A: A new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum . Tetrahedron Lett 1995; 36: 4097-4100
  • 110 Wipf P, Venkatraman S. Total Synthesis of (−)-Muscoride A. J Org Chem 1996; 61: 6517-6522
  • 111 Pérez Gutiérrez RM, Martinéz Flores A, Vargas Solís R, Carmona Jiminez J. Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris . J Nat Med 2008; 62: 328-331
  • 112 Ploutno A, Carmeli S. Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 2000; 63: 1524-1526
  • 113 Luesch H, Pangilinan R, Yoshida WY, Moore RE, Paul VJ. Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula . J Nat Prod 2001; 64: 304-307
  • 114 Cruz-Rivera E, Paul VJ. Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J Chem Ecol 2007; 33: 213-217
  • 115 Montaser R, Paul VJ, Luesch H. Pitipeptolides C–F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam. Phytochemistry 2011; 72: 2068-2074
  • 116 Pergament I, Carmeli S. Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett 1994; 35: 8473-8476
  • 117 Noaman NH, Fattah A, Khaleafa M, Zaky SH. Factors affecting antimicrobial activity of Synechococcus leopoliensis . Microbiol Res 2004; 159: 395-402
  • 118 Martins RF, Ramos MF, Herfindal L, Sousa JA, Skaerven K, Vasconcelos VM. Antimicrobial and cytotoxic assessment of marine cyanobacteria – Synechocystis and Synechococcus. Mar Drugs 2008; 6: 1-11
  • 119 Chlipala G, Mo S, Carcache de Blanco EJ, Ito A, Bazarek S, Orjala J. Investigation of antimicrobial and protease-inhibitory activity from cultured cyanobacteria. Pharm Biol 2009; 47: 53-60
  • 120 Silva-Stenico ME, Silva CSP, Lorenzi AS, Shishido TK, Etchegaray A, Lira SP, Moraes LAB, Fiore MF. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol Res 2011; 166: 161-175
  • 121 Guedes AC, Barbosa CR, Amaro HM, Pereira CI, Malcata FX. Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int J Food Sci Technol 2011; 46: 862-870
  • 122 Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005; 21: 319-346
  • 123 Williams P, Winzer K, Chan WC, Cámara M. Look whoʼs talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362: 1119-1134
  • 124 Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 2006; 4: 249-258
  • 125 Schuster M, Joseph Sexton D, Diggle SP, Peter Greenberg E. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 2013; 67: 43-63
  • 126 Defoirdt T, Boon N, Bossier P. Can bacteria evolve resistance to quorum sensing disruption?. PLoS Pathog 2010; 6: e1000989
  • 127 Kaufmann GF, Park J, Janda KD. Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 2008; 8: 719-724
  • 128 Hirakawa H, Tomita H. Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol 2013; 4: 1-14
  • 129 Sharif DI, Gallon J, Smith CJ, Dudley E. Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2008; 2: 1171-1182
  • 130 Romero M, Muro-Pastor AM, Otero A. Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 2011; 315: 101-108
  • 131 Romero M, Diggle SP, Heeb S, Cámara M, Otero A. Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 2008; 280: 73-80
  • 132 Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH. Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum . J Nat Prod 2008; 71: 1530-1537
  • 133 Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2010; 2: 739-744
  • 134 Ainslie RD, Barchi JJ, Kuniyoshi M, Moore RE, Myndersel JS. Structure of Malyngamide C. J Org Chem 1985; 50: 2859-2862
  • 135 Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H. Lyngbyoic acid, a “tagged” fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa . Mol Biosyst 2011; 7: 1205-1216
  • 136 Neuhof T, Schmieder P, Preussel K, Dieckmann R, Pham H, Bartl F, von Döhren H. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J Nat Prod 2005; 68: 695-700
  • 137 Neuhof T, Schmieder P, Seibold M, Preussel K, von Döhren H. Hassallidin B–second antifungal member of the Hassallidin family. Bioorg Med Chem Lett 2006; 16: 4220-4222
  • 138 Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, Wahlsten M, Wang H, Rouhiainen L, Sivonen K. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci U S A 2014; 111: E1909-E1917
  • 139 Neuhof T, Dieckmann R, von Döhren H, Preußel K, Seibold M, Schmieder P. Lipopeptides having pharmaceutical activity.. Patent WO 2006/092313 A1, 2006
  • 140 Bui TH, Wray V, Nimtz M, Fossen T, Preisitsch M, Schröder G, Wende K, Heiden SE, Mundt S. Balticidins A–D, antifungal hassallidin-like lipopeptides from the Baltic Sea cyanobacterium Anabaena cylindrica Bio33. J Nat Prod 2014; 77: 1287-1296
  • 141 Frankmölle WP, Larsen LK, Caplan FR, Patterson GML, Knübel G, Levine IA, Moore RE. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. I. Isolation and biological properties. J Antibiot (Tokyo) 1991; 45: 1451-1457
  • 142 Frankmölle WP, Knübel G, Moore RE, Patterson GML. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II. Structures of laxaphycins A, B, C, D and E. J Antibiot (Tokyo) 1992; 45: 1458-1466
  • 143 Bonnard I, Rolland M, Francisco C, Banaigs B. Total structure and biological properties of laxaphycins A and B, cyclic lipopeptides from the marine cyanobacterium Lyngbya majuscula . Lett Pept Sci 1997; 4: 289-292
  • 144 Bonnard I, Rolland M, Salmon JM, Debiton E, Barthomeuf C, Banaigs B. Total structure and inhibition of tumor cell proliferation of laxaphycins. J Med Chem 2007; 50: 1266-1279
  • 145 Gbankoto A, Vigo J, Dramane K, Banaigs B, Aina E, Salmon JM. Cytotoxic effect of Laxaphycins A and B on human lymphoblastic cells (CCRF-CEM) using digitised videomicrofluorometry. In Vivo 2005; 19: 577-582
  • 146 Carter DC, Moore RE, Mynderse JS, Niemczura WP, Todd JS. Structure of majusculamide C, a cyclic depsipeptide from Lyngbya majuscula . J Org Chem 1984; 49: 236-241
  • 147 Moore RE, Mynderse JS. Majusculamide C.. US Patent 4342751, 1982
  • 148 Pettit GR, Hogan F, Xu JP, Tan R, Nogawa T, Cichacz Z, Pettit RK, Du J, Ye QH, Cragg GM, Herald CL, Hoard MS, Goswami A, Searcy J, Tackett L, Doubek DL, Williams L, Hooper JNA, Schmidt JM, Chapuis JC, Tackett DN, Craciunescu F. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms. J Nat Prod 2008; 71: 438-444
  • 149 Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J. Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni . J Org Chem 1986; 51: 5300-5306
  • 150 Carmeli S, Moore RE, Patterson GML. Tolytoxin and new scytophycins from three species of Scytonema. J Nat Prod 1990; 53: 1533-1542
  • 151 Patterson GML, Carmeli S. Biological effects of tolytoxin (6-hydroxy-7-O-methyl-scytophycin b), a potent bioactive metabolite from cyanobacteria. Arch Microbiol 1992; 157: 406-410
  • 152 Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S. Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskeleton 1993; 24: 39-48
  • 153 Smith CD, Carmeli S, Moore RE, Patterson GML. Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multifrug resistance. Cancer Res 1993; 53: 1343-1347
  • 154 Patterson GML, Bolis CM. Fungal cell-wall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium Scytonema ocellatum . J Phycol 1997; 33: 54-60
  • 155 Moon SS, Chen JL, Moore RE, Patterson GML. Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca . J Org Chem 1992; 57: 1097-1103
  • 156 Singh IP, Milligan KE, Gerwick WH. Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula . J Nat Prod 1999; 62: 1333-1335
  • 157 Kanada RM, Taniguchi T, Ogasawara K. The First Synthesis of (+)-Tanikolide, a Toxic and Antifungal Lactone from the Marine Cyanobactetrium Lyngbya majuscula . Synlett 2000; 7: 1019-1021
  • 158 Milligan KE, Marquez BL, Williamson RT, Gerwick WH. Lyngbyabellin B, a toxic and antifungal secondary metabolite from the marine cyanobacterium Lyngbya majuscula . J Nat Prod 2000; 63: 1440-1443
  • 159 Kajiyama S, Kanzaki H, Kawazu K, Kobayashi A. Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune . Tetrahedron Lett 1998; 39: 3737-3740
  • 160 Jaki B, Zerbe O, Heilmann J, Sticher O. Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195). J Nat Prod 2001; 64: 154-158
  • 161 Hagmann L, Jüttner F. Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 1996; 37: 6539-6542
  • 162 MacMillan JB, Molinski TF. Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod 2005; 68: 604-606
  • 163 MacMillan JB, Ernst-Russell MA, de Ropp JS, Molinski TF. Lobocyclamides A–C, lipopeptides from a cryptic cyanobacterial mat containing Lyngbya confervoides . J Org Chem 2002; 67: 8210-8215
  • 164 Sonjoukhan R, Smltka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis . Tetrahedron 1991; 47: 7739-7750
  • 165 Mundt S, Nowotny A, Mentel R, Lesnau A, Lindequist U. Antiviral activity of the cyanobacterium Microcystis aeruginosa SPH 01. Pharm Pharmacol Lett 1997; 7: 161-163
  • 166 Zainuddin EN, Mundt S, Wegner U, Mentel R. Cyanobacteria a potential source of antiviral substances against influenza virus. Med Microbiol Immunol 2002; 191: 181-182
  • 167 Sharaf M, Amara A, Helmi S, Ballot A, Astani A, Schnitzler P. Molecular authentication and characterization of the antiherpetic activity of the cyanobacterium Arthrospira fusiformis . Pharmazie 2010; 65: 132-136
  • 168 Lopes VR, Schmidtke M, Fernandes MH, Martins R, Vasconcelos V. Toxicology in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts. Toxicol In Vitro 2011; 25: 944-950
  • 169 Gustafson KR, Cardellina 2nd JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GML, Boyd MR. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 1989; 81: 1254-1258
  • 170 Reshef V, Mizrachi E, Maretzki T, Silberstein C, Loya S, Hizi A, Carmeli S. New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit the reverse transcriptase of HIV-1. J Nat Prod 1997; 60: 1251-1260
  • 171 Loya S, Reshef V, Mizrachi E, Silberstein C, Rachamim Y. The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: contribution of different moieties to their high potency. J Nat Prod 1998; 61: 891-895
  • 172 Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, OʼKeefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina 2nd JH, Buckheit jr. RW, Nara PL, Pannell LK, Sowder 2nd RC, Henderson LE. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41: 1521-1530
  • 173 Gustafson KR, Sowder 2nd RC, Henderson LE, Cardellina 2nd JH, McMahon JB, Rajamani U, Pannell LK, Boyd MR. Isolation, primary sequence determination, and disulfide bond structure of cyanovirin-N, an anti-HIV (human immunodeficiency virus) protein from the cyanobacterium Nostoc ellipsosporum . Biochem Biophys Res Commun 1997; 228: 223-228
  • 174 Bolmstedt AJ, OʼKeefe BR, Shenoy SR, McMahon JB, Boyd MR. Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol Pharmacol 2001; 59: 949-954
  • 175 Bewley CA, Kiyonaka S, Hamachi I. Site-specific discrimination by cyanovirin-N for alpha-linked trisaccharides comprising the three arms of Man8 and Man9. J Mol Biol 2002; 322: 881-889
  • 176 Botos I, OʼKeefe BR, Shenoy SR, Cartner LK, Ratner DM, Seeberger PH, Boyd MR, Wlodawer A. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 2002; 277: 34336-34342
  • 177 OʼKeefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR. Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob Agents Chemother 2003; 47: 2518-2525
  • 178 van der Meer FJUM, de Haan CAM, Schuurman NMP, Haijema BJ, Peumans WJ, Van Damme EJM, Delputte PL, Balzarini J, Egberink HF. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res 2007; 76: 21-29
  • 179 Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 2011; 50: 10698-10712
  • 180 Xiong S, Fan J, Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 2010; 86: 805-812
  • 181 Huskens D, Vermeire K, Vandemeulebroucke E, Balzarini J, Schols D. Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent. Int J Biochem Cell Biol 2008; 40: 2802-2814
  • 182 Huskens D, Férir G, Vermeire K, Kehr J, Balzarini J, Dittmann E, Schols D. Microvirin, a novel alpha(1,2)-mannose-specific lectin isolated from Microcystis aeruginosa, has anti-HIV-1 activity comparable with that of cyanovirin-N but a much higher safety profile. J Biol Chem 2010; 285: 24845-24854
  • 183 Bokesch HR, OʼKeefe BR, McKee TC, Pannell LK, Patterson GML, Gardella RS, Sowder 2nd RC, Turpin J, Watson K, Buckheit jr. RW, Boyd MR. A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium . Biochemistry 2003; 42: 2578-2584
  • 184 Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme . J Nat Prod 2005; 68: 1037-1041
  • 185 Wan F, Erickson KL. Serinol-derived malyngamides from an Australian cyanobacterium. J Nat Prod 1999; 62: 1696-1699
  • 186 Zainuddin EN, Mentel R, Wray V, Jansen R, Nimtz M, Lalk M, Mundt S. Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe . J Nat Prod 2007; 70: 1084-1088
  • 187 Gupta DK, Kaur P, Leong ST, Tan LT, Prinsep MR, Chu JJH. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum . Mar Drugs 2014; 12: 115-127
  • 188 Larsen LK, Moore RE, Patterson GML. beta-Carbolines from the blue-green alga Dichothrix baueriana . J Nat Prod 1994; 57: 419-421
  • 189 Knübel G, Larsen LK, Moore RE, Levine IA, Patterson GML. Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocaceae. J Antibiot 1990; 43: 1236-1239
  • 190 Gademann K, Kobylinska J. Antimalarial natural products of marine and freshwater origin. Chem Rec 2009; 9: 187-198
  • 191 Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J Nat Prod 2008; 71: 1891-1896
  • 192 Portmann C, Sieber S, Wirthensohn S, Blom JF, Da Silva L, Baudat E, Kaiser M, Brun R, Gademann K. Balgacyclamides, antiplasmodial heterocyclic peptides from Microcystis aeruguinosa EAWAG 251. J Nat Prod 2014; 77: 557-562
  • 193 Peña S, Scarone L, Medeiros A, Manta E, Comini M, Serra G. Synthesis of precursors and macrocycle analogs of aerucyclamides as anti-trypanosomal agents. MedChemComm 2012; 3: 1443-1448
  • 194 Sanchez LM, Lopez D, Vesely BA, Della Togna G, Gerwick WH, Kyle DE, Linington RG. Almiramides A–C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 2010; 53: 4187-4197
  • 195 Linington RG, Sanchez LM. Novel Anti-Parasitic Compounds.. Patent WO 2010/108164, 2010
  • 196 Barbaras D, Kaiser M, Brun R, Gademann K. Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorg Med Chem Lett 2008; 18: 4413-4415
  • 197 Simmons TL, Engene N, Ureña LD, Romero LI, Ortega-Barría E, Gerwick L, Gerwick WH. Viridamides A and B, Lipodepsipeptides with Antiprotozoal Activity from the Marine Cyanobacterium Oscillatoria nigro-viridis . J Nat Prod 2008; 71: 1544-1550
  • 198 Vining OB, Medina RA, Mitchell EA, Videau P, Li D, Serrill JD, Kelly JX, Gerwick WH, Proteau PJ, Ishmael JE, McPhail KL. Depsipeptide companeramides from a panamanian marine cyanobacterium associated with the coibamide producer. J Nat Prod 2015; 78: 413-420
  • 199 Papendorf O, König GM, Wright AD. Hierridin B and 2, 4-dimethoxy-6-heptadecylphenol, secondary metabolites from the cyanobacterium Phormidium ectocarpi with antiplasmodial activity. Phytochemistry 1998; 49: 2383-2386
  • 200 Leão PN, Costa M, Ramos V, Pereira AR, Fernandes VC, Domingues VF, Gerwick WH, Vasconcelos VM, Martins R. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 2013; 8: e69562
  • 201 Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 1999; 55: 13513-13520
  • 202 McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barría E, Capson TL, Gerwick WH. Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula . J Nat Prod 2007; 70: 984-988
  • 203 Tripathi A, Puddick J, Prinsep MR, Rottmann M, Tan LT. Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula . J Nat Prod 2010; 73: 1810-1814
  • 204 Tripathi A, Puddick J, Prinsep MR, Rottmann M, Chan KP, Chen DY, Tan LT. Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula . Phytochemistry 2011; 72: 2369-2375
  • 205 Gutiérrez M, Tidgewell K, Capson TL, Engene N, Almanza A, Schemies J, Jung M, Gerwick WH. Malyngolide dimer, a bioactive symmetric cyclodepside from the panamanian marine cyanobacterium Lyngbya majuscula . J Nat Prod 2010; 73: 709-711
  • 206 Linington RG, Gonzalez J, Ureña LD, Romero LI, Ortega-Barría E, Gerwick WH. Venturamides A and B: antimalarial constituents of the panamanian marine Cyanobacterium Oscillatoria sp. J Nat Prod 2007; 70: 397-401
  • 207 Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 2009; 72: 14-17
  • 208 Miller B, Friedman AJ, Choi H, Hogan J, McCammon JA, Hook V, Gerwick WH. The marine cyanobacterial metabolite gallinamide A is a potent and selective inhibitor of human cathepsin L. J Nat Prod 2014; 77: 92-99
  • 209 Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 2006; 6: 411-425
  • 210 Chitsulo L, Engels D, Montresor A, Savioli L. The global status of schistosomiasis and its control. Acta Trop 2000; 77: 41-51
  • 211 WHO. Report of the Scientific Working Group Meeting on Schistosomiasis. Geneva: WHO; 2005
  • 212 Orjala J, Gerwick WH. Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscula . J Nat Prod 1996; 59: 427-430
  • 213 Sitachitta N, Rossi J, Roberts MA, Gerwick WH, Fletcher MD, Willis CL. Biosynthesis of the marine cyanobacterial metabolite barbamide. 1. Origin of the trichloromethyl group. J Am Chem Soc 1998; 120: 7131-7132
  • 214 Williamson RT, Sitachitta N, Gerwick WH. Biosynthesis of the marine cyanobacterial metabolite barbamide. 2: Elucidation of the origin of the thiazole ring by application of a new GHNMBC experiment. Tetrahedron Lett 1999; 40: 5175-5178
  • 215 Sitachitta N, Márquez BL, Williamson RT, Rossi J, Roberts MA, Gerwick WH, Nguyen VA, Willis CL. Biosynthetic Pathway and Origin of the Chlorinated Methyl Group in Barbamide and Dechlorobarbamide, Metabolites from the Marine Cyanobacterium Lyngbya majuscula . Tetrahedron 2000; 56: 9103-9113
  • 216 Flatt PM, OʼConnell SJ, McPhail KL, Zeller G, Willis CL, Sherman DH, Gerwick WH. Characterization of the initial enzymatic steps of barbamide biosynthesis. J Nat Prod 2006; 69: 938-944
  • 217 Galonic DP, Vaillancourt H, Walsh CT. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J Am Chem Soc 2006; 128: 3900-3901
  • 218 Pereira AR, McCue CF, Gerwick WH. Cyanolide A, a glycosidic macrolide with potent Molluscicidal activity from the Papua New Guinea cyanobacterium Lyngbya bouillonii . J Nat Prod 2010; 73: 217-220
  • 219 Kim H, Hong J. Total synthesis of cyanolide A and confirmation of its absolute configuration. Org Lett 2010; 12: 2880-2883
  • 220 Hajare AK, Ravikumar V, Khaleel S, Bhuniya D, Reddy DS. Synthesis of molluscicidal agent cyanolide a macrolactone from D-(−)-pantolactone. J Org Chem 2011; 76: 963-966
  • 221 Pabbaraja S, Satyanarayana K, Ganganna B, Yadav JS. Formal total synthesis of cyanolide A. J Org Chem 2011; 76: 1922-1925
  • 222 Waldeck AR, Krische MJ. Total synthesis of cyanolide A in the absence of protecting groups, chiral auxiliaries, or premetalated carbon nucleophiles. Angew Chem Int Ed Engl 2013; 52: 4470-4473
  • 223 Pereira AR, Etzbach L, Engene N, Müller R, Gerwick WH. Molluscicidal metabolites from an assemblage of Palmyra Atoll cyanobacteria. J Nat Prod 2011; 74: 1175-1181
  • 224 Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V. The chemical ecology of cyanobacteria. Nat Prod Rep 2012; 29: 372-391
  • 225 Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006; 5: 785-799
  • 226 Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella . Proc Natl Acad Sci U S A 2005; 102: 7315-7320
  • 227 Donia MS, Ravel J, Schmidt EW. A global assembly line for cyanobactins. Nat Chem Biol 2008; 4: 341-343
  • 228 Ziemert N, Ishida K, Weiz A, Hertweck C, Dittmann E. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Appl Environ Microbiol 2010; 76: 3568-3574
  • 229 Kim EJ, Lee JH, Choi H, Pereira AR, Ban YH, Yoo YJ, Kim E, Park JW, Sherman DH, Gerwick WH, Yoon YJ. Heterologous production of 4-O-demethylbarbamide, a marine cyanobacterial natural product. Org Lett 2012; 14: 5824-5827
  • 230 Ongley SE, Bian X, Zhang Y, Chau R, Gerwick WH, Müller R, Neilan BE. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS Chem Biol 2013; 8: 1888-1893