Planta Med 2015; 81(12/13): 1128-1132
DOI: 10.1055/s-0035-1546036
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antiplasmodial Isoflavanes and Pterocarpans from Apoplanesia paniculata [*]

Qingxi Su
1   Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States
,
Priscilla Krai
2   Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States
,
Michael Goetz
3   Natural Products Discovery Institute, Doylestown, Pennsylvania, United States
,
Maria B. Cassera
2   Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States
,
David G. I. Kingston
1   Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 24. Februar 2015
revised 02. April 2015

accepted 07. April 2015

Publikationsdatum:
27. Mai 2015 (online)

Abstract

Bioassay-guided fractionation of an EtOH extract of the roots of the plant Apoplanesia paniculata (Fabaceae) led to the isolation of the three known compounds amorphaquinone (1), pendulone (2), and melilotocarpan C (3), and the two new pterocarpans 4 and 5. Compounds 1 and 2 exhibited good antiplasmodial activity with IC50 values of 5.7 ± 1.5 and 7.0 ± 0.8 µM, respectively. Compound 3 exhibited weak antiplasmodial activity (41.8 ± 5.2 µM), while compounds 4 and 5 were inactive. Compound 6 was synthesized to confirm the structure of 5, and it showed enhanced antiplasmodial activity (15.8 ± 1.4 µM) compared to its analogues 35.

* Dedicated to Professor Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


Supporting Information

 
  • References

  • 1 Anonymous World Malaria Report 2014. Available at http://www.who.int/entity/malaria/publications/world_malaria_report_2014/en/index.html Accessed May 7, 2015
  • 2 Dondorp AM, Fairhurst RM, Slutsker L, MacArthur JR, Breman JG, Guerin PJ, Wellems TE, Ringwald P, Newman RD, Plowe CV. The threat of artemisinin-resistant malaria. N Engl J Med 2011; 365: 1073-1075
  • 3 Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009; 7: 864-874
  • 4 Negi AS, Gupta A, Hamid AA. Combating malaria with plant molecules: a brief update. Curr Med Chem 2014; 21: 458-500
  • 5 Nogueira CR, Lopes LMX. Antiplasmodial natural products. Molecules 2011; 16: 2146-2190
  • 6 Schwikkard S, van Heerden FR. Antimalarial activity of plant metabolites. Nat Prod Rep 2002; 19: 675-692
  • 7 Ohyama M, Tanaka T, Iinuma M. A prenylated flavanone from roots of Amorpha fruticosa . Phytochemistry 1998; 48: 907-909
  • 8 Hayashi Y, Shirato T, Sakurai K, Takahashi T. Isoflavanoids from the heartwood of Millettia pendula Benth. J Jpn Wood Res Soc 1978; 24: 898-901
  • 9 Miyase T, Ohtsubo A, Ueno A, Noro T, Kuroyanagi M, Fukushima S. Studies on the pterocarpans from Melilotus alba DESR. Chem Pharm Bull 1982; 30: 1986-1991
  • 10 Radwan MM. Isoflavonoids from an Egyptian collection of Colutea istria . Nat Prod Commun 2008; 3: 1491-1494
  • 11 Rahman AA, Samoylenko V, Jain SK, Tekwani BL, Khan SI, Jacob MR, Midiwo JO, Hester JP, Walker LA, Muhammad I. Antiparasitic and antimicrobial isoflavanquinones from Abrus schimperi . Nat Prod Commun 2011; 6: 1645-1650
  • 12 Kiss L, Kurtan T, Antus S, Benyei A. Chiroptical properties and synthesis of enantiopure cis and trans pterocarpan skeleton. Chirality 2003; 15: 558-563
  • 13 Jiménez-González L, Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Pterocarpans: interesting natural products with antifungal activity and other biological properties. Phytochem Rev 2008; 7: 125-154
  • 14 Chen WH, Wang R, Shi YP. Flavonoids in the poisonous plant Oxytropis falcata . J Nat Prod 2010; 73: 1398-1403
  • 15 Tjahjandarie TS, Pudjiastuti P, Saputr RD, Tanjung M. Antimalarial and antioxidant activity of phenolic compounds isolated from Erythrina crista-galli L. J Chem Pharm Res 2014; 6: 786-790
  • 16 Takahashi M, Fuchino H, Sekita S, Satake M, Kiuchi F. In vitro leishmanicidal constituents of Millettia pendula . Chem Pharm Bull 2006; 54: 915-917
  • 17 Konoshima T, Takasaki M, Kozuka M, Tokuda H, Nishino H, Matsuda E, Nagai M. Anti-tumor promoting activities of isoflavonoids from Wistaria brachybotrys . Biol Pharm Bull 1997; 20: 865-868
  • 18 Dagne E, Gunatilaka AAL, Kingston DGI, Alemu M, Hofmann G, Johnson RK. Two bioactive pterocarpans from Erythrina burana . J Nat Prod 1993; 56: 1831-1834
  • 19 Meragelman TL, Tucker KD, McCloud TG, Cardellina JH, Shoemaker RH. Antifungal flavonoids from Hildegardia barteri . J Nat Prod 2005; 68: 1790-1792
  • 20 Rukachaisirikul T, Innok P, Suksamrarn A. Erythrina alkaloids and a pterocarpan from the bark of Erythrina subumbrans . J Nat Prod 2008; 71: 156-158
  • 21 Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson E, Roepe PD. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004; 48: 1807-1810
  • 22 Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 2004; 48: 1803-1806
  • 23 Cao S, Brodie PJ, Miller JS, Randrianaivo R, Ratovoson F, Birkinshaw C, Andriantsiferana R, Rasamison VE, Kingston DGI. Antiproliferative xanthones of Terminalia calcicola from the Madagascar rain forest. J Nat Prod 2007; 70: 679-681
  • 24 Pan E, Harinantenaina L, Brodie PJ, Miller JS, Callmander MW, Rakotonandrasana S, Rakotobe E, Rasamison VE, Kingston DGI. Four diphenylpropanes and a cycloheptadibenzofuran from Bussea sakalava from the Madagascar dry forest. J Nat Prod 2010; 73: 1792-1795