Planta Med 2015; 81(09): 687-695
DOI: 10.1055/s-0035-1545843
Georg Thieme Verlag KG Stuttgart · New York

DNA-Based Authentication of Botanicals and Plant-Derived Dietary Supplements: Where Have We Been and Where Are We Going?

Denise F. Coutinho Moraes*
1   Federal University of Maranhão (UFMA), Department of Pharmacy, São Luis, Maranhão, Brazil
David W. Still*
2   Department of Plant Science, California State Polytechnic University, Pomona, CA, USA
Michelle R. Lum
3   Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
Ann M. Hirsch
4   Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA, USA
5   Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
› Author Affiliations
Further Information

Publication History

received 11 August 2014
revised 10 February 2015

accepted 16 February 2015

Publication Date:
09 April 2015 (online)


Herbal medicines and botanicals have long been used as sole or additional medical aids worldwide. Currently, billions of dollars are spent on botanicals and related products, but minimal regulation exists regarding their purity, integrity, and efficacy. Cases of adulteration and contamination have led to severe illness and even death in some cases. Identifying the plant material in botanicals and phytomedicines using organoleptic means or through microscopic observation of plant parts is not trivial, and plants are often misidentified. Recently, DNA-based methods have been applied to these products because DNA is not changed by growth conditions unlike the chemical constituents of many active pharmaceutical agents. In recent years, DNA barcoding methods, which are used to identify species diversity in the Tree of Life, have been also applied to botanicals and plant-derived dietary supplements. In this review, we recount the history of DNA-based methods for identification of botanicals and discuss some of the difficulties in defining a specific bar code or codes to use. In addition, we describe how next generation sequencing technologies have enabled new techniques that can be applied to identifying these products with greater authority and resolution. Lastly, we present case histories where dietary supplements, decoctions, and other products have been shown to contain materials other than the main ingredient stipulated on the label. We conclude that there is a fundamental need for greater quality control in this industry, which if not self-imposed, that may result from legislation.

* Joint first authors.

Supporting Information

  • References

  • 1 Joharchi MR, Amiri MS. Taxonomic evaluation of misidentification of crude herbal drugs marketed in Iran. Avicenna J Phytomed 2012; 2: 105-112
  • 2 World Health Organization. Traditional medicine. Fact Sheet no134. Available at Accessed June 19, 2014
  • 3 World Health Organization. National policy on traditional medicine and regulation on herbal medicine. Report of a WHO global survey. Geneva: World Health Organization; 2005
  • 4 University of Maryland Medicinal Center (UMMC). http://
  • 5 Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med 2013; 173: 355-361
  • 6 Peregoy JA, Clarke TC, Jones LI, Stussman BJ, Nahin RL. Regional variation in use of complementary health approaches by U.S. adults. NCHS Data Brief 2014; 1-8
  • 7 Global Industry Analyst, Inc.. Herbal supplements and remedies – global strategic business report. Available at Accessed January 22, 2014
  • 8 Govindaraghavan S, Hennell JR, Sucher N. From classical taxonomy to genome and metabolome: towards comprehensive quality standards for medicinal herb raw materials and extracts. Fitoterapia 2012; 83: 979-988
  • 9 World Health Organization/TRM/98.1. Regulatory situation of herbal medicine. A worldwide review. Geneva: World Health Organization; 1998
  • 10 Betz JM, Brown PN, Roman MC. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 2011; 82: 44-52
  • 11 Leise MD, Poterucha JJ, Talwalkar JA. Drug-induced liver injury. Mayo clinic proceedings, Vol 89. Amsterdam: Elsevier; 2014: 95-106
  • 12 Gafner S, Blumenthal M, Harbaugh Reynaud D, Foster S, Techen N. http://
  • 13 Walker KM, Applequist WL. Adulteration of selected unprocessed botanicals in the US retail herbal trade. Econ Bot 2012; 66: 321-327
  • 14 Lum MR, Hirsch AM. Molecular methods for the authentication of botanicals and detection of potential contaminants and adulterants. In: Khan IA, Smilie TJ, Craker LE, Gardner ZE, editors. IVth international conference on quality and safety issues related to botanicals. Acta Horticulturae 2007; 720: 59-71
  • 15 Heubl G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biology techniques. Planta Med 2010; 76: 1963-1974
  • 16 Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One 2011; 6: e19254
  • 17 Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc 2015; 90: 157-166
  • 18 Techen N, Parveen I, Pan Z, Kahn IA. DNA barcoding of medicinal plants for identification. Curr Opin Biotechnol 2014; 25: 103-110
  • 19 Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identification through DNA barcodes. Proc Biol Sci 2003; 270: 313-321
  • 20 CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A 2009; 106: 12794-12797
  • 21 Li HQ, Chen JY, Wang S, Xiong SZ. Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Mol Ecol Resour 2012; 12: 783-790
  • 22 Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003; 270 (Suppl. 01) S96-S99
  • 23 Luo A, Zhang A, Ho SY, Xu W, Zhang Y, Shi W, Cameron SL, Zhu C. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. BMC Genomics 2011; 12: 84
  • 24 Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 1987; 84: 9054-9058
  • 25 Kress WJ, Wurdack KJ, Zimmer EA, Weight LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 2005; 102: 8369-8374
  • 26 Chen S, Yao H, Han J, Liu C, Song J, Shi I, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia K, Lin Y, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010; 5: e8613
  • 27 Rokas A, Williams BL, King N, Carroll SB. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 2003; 425: 798-804
  • 28 Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 2012; 61: 727-744
  • 29 Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 2012; 61: 717-726
  • 30 McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res 2012; 22: 746-754
  • 31 McGregor RL. The taxonomy of the genus Echinacea (Compositae) [dissertation]. Lawrence: University of Kansas; 1968
  • 32 Kim DH, Heber D, Still DW. Genetic diversity of Echinacea species based on amplified fragment length polymorphism markers. Genome 2004; 47: 102-111
  • 33 Flagel LE, Rapp RA, Grover CE, Widrlechner MP, Hawkins J, Grafenberg JL, Álvarez I, Chung GY, Wendel JF. Phylogenetic, morphological, and chemotaxonomic incongruence in the North American endemic genus Echinacea . Am J Bot 2008; 95: 756-765
  • 34 Sadava D, Still DW, Mudry RR, Kane SE. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells. Cancer Lett 2009; 277: 182-189
  • 35 Parks M, Cronn R, Liston A. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol 2012; 12: 100
  • 36 Stull GW, Moore MJ, Mandala VS, Douglas NA, Kates HR, Qi X, Brockington SF, Soltis PS, Soltis DE, Gitzendanner MA. A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl Plant Sci 2013; 1
  • 37 Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J. Targeted enrichment strategies for next-generation plant biology. Am J Bot 2012; 99: 291-311
  • 38 Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995; 23: 4407-4414
  • 39 Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 2008; 3: e3376
  • 40 Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011; 6: e19379
  • 41 Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B, Michelmore R. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS One 2013; 8: e55913
  • 42 Monson-Miller J, Sanchez-Mendez DC, Fass J, Henry IM, Tai TH, Comai L. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing. BMC Genomics 2012; 13: 72
  • 43 Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 2009; 7: 84
  • 44 Ku C, Hu JM, Kuo CH. Complete plastid genome sequence of the basal asteroid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS One 2013; 8: e62548
  • 45 Ku C, Cung WC, Chen LL, Kuo CH. The complete plasmid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS One 2013; 8: e68518
  • 46 Vandamme P, Peters C. Time to revisit polyphasic taxonomy. Antonie Van Leeuenhoek 2014; 106: 57-65
  • 47 Rubinoff D, Cameron S, Will K. Are plant DNA barcodes a search for the Holy Grail?. Trends Ecol Evol 2006; 21: 1-2
  • 48 LeRoy A, Potter E, Woo HH, Heber D, Hirsch AM. Characterization and identification of alfalfa and red clover dietary supplements using a PCR-based method. J Agric Food Chem 2002; 50: 5063-5069
  • 49 Mihalov JJ, Maderosian AD, Pierce JC. DNA identification of commercial ginseng samples. J Agric Food Chem 2000; 48: 3744-3752
  • 50 Lau DT, Shaw PC, Wang J, But PP. Authentication of medicinal Dendrobium species by the internal transcribed spacer of ribosomal DNA. Planta Med 2001; 67: 456-460
  • 51 Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MG. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 1995; 82: 247-277
  • 52 Small RL, Cronn RC, Wendel JF. Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 2004; 17: 145-170
  • 53 Bailey CD, Carr TG, Harris SA, Hughes CE. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 2003; 29: 435-455
  • 54 Lum MR, Baycher A, Prigge BA, Hardy M, Heber D, Hirsch AM. Identification of green tea (Camellia sinensis L.) and tea oil (Camellia oleifera Abel.) by molecular biological and anatomical methods. In: Ebeler SE, Takeoka GR, Winterhalter P, editors Authentication of food and wine. Washington, D.C.: ACS and Oxford University Press; 2007: 290-304
  • 55 Kusari S, Lamshöft M, Spiteller M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxyodophylllotoxin. J Appl Microbiol 2009; 107: 1019-1030
  • 56 Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 2010; 5: e13102
  • 57 Lum MR, Hirsch AM. Detecting the components of botanical mixtures by single-strand conformation polymorphism analysis. In: Ebeler SE, Takeoka GR, Winterhalter P, editors. Authentication of food and wine. ACS Symposium Series 2011; 1081: 351-362
  • 58 Pang X, Shi L, Song J, Chen X, Chen S. Use of the potential DNA barcode ITS2 to identify herbal materials. J Nat Med 2013; 67: 571-575
  • 59 China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 2011; 108: 19641-19646
  • 60 Chiou SJ, Yen JH, Feng CL, Chen HL, Lin TY. Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. Planta Med 2007; 73: 1421-1426
  • 61 Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 1989; 86: 2766-2770
  • 62 Schmalenberger A, Tebbe CC. Profiling the diversity of microbial communities with single-strand conformation polymorphism (SSCP). In: Paulsen IT, Holmes AJ, editors Environmental microbiology: methods and protocols, methods in molecular biology, Vol. 1096. Heidelberg: Springer Science+Business Media, LLC; 2014: 71-83
  • 63 Kojoma M, Kurihara K, Yamada K, Sekita S, Satake M, Iida O. Genetic identification of cinnamon (Cinnamomum spp.) based on the trnL-trnF chloroplast DNA. Planta Med 2002; 68: 94-96
  • 64 Wu Y, Zhang H, Han J, Wang W, Ju X, Chen Y. PCR-CE-SSCP applied to detect cheap oil blended in olive oil. Eur Food Res Technol 2011; 233: 313-324
  • 65 Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997; 245: 154-160
  • 66 Guldberg P, Worm J, Grønbæk K. Profiling DNA methylation by melting analysis. Methods 2002; 27: 121-127
  • 67 Jeong S, Hahn Y, Rong Q, Pfeifer K. Accurate quantitation of allele-specific expression patterns by analysis of DNA melting. Genome Res 2007; 17: 1093-1100
  • 68 Mader E, Ruzicka J, Schmiderer C, Novak J. Quantitative high-resolution melting analysis for detecting adulterations. Anal Biochem 2011; 409: 153-155
  • 69 Lochlainn SO, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR. High resolution melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 2011; 7: 43
  • 70 Ganopoulos I, Bazakos C, Madesis P, Kalaitzis P, Tsaftaris A. Barcode-DNA high resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J Agric Food Chem 2013; 93: 2281-2286
  • 71 Luo W, Guo T, Yang Q, Wang H, Liu Y, Zhu X, Chen Z. Stacking of five favorable alleles for amylase content, fragrance and disease resistance into elite lines in rice (Oryza sativa) by using four HRM-based markers and a linked gel-based marker. Mol Breed 2014; 34: 805-815
  • 72 Li M, Zhou L, Palais RA, Wittwer CT. Genotyping accuracy of high-resolution DNA melting instruments. Clin Chem 2014; 60: 864-872
  • 73 Bosmali I, Ganopoulos I, Madesis P, Tsaftaris A. Microsatellite and DNA barcode regions typing combined with High Resolution Melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int 2012; 46: 141-147
  • 74 Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A. Barcode high resolution melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 2012; 133: 505-512
  • 75 Madesis P, Ganopoulos I, Argiriou A, Tsaftaris A. The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 2012; 25: 576-582
  • 76 Schmiderer C, Mader E, Novak J. DNA-based identification of Helleborus niger by high-resolution melting analysis. Planta Med 2010; 76: 1934-1937
  • 77 Stoecke MY, Gamble CC, Kirpekar R, Young G, Ahmed S, Little DP. Commercial teas highlight plant DNA barcode identification successes and obstacles. Sci Rep 2011; 1: 42
  • 78 Ratmasingham S, Hebert PDN. bold: The Barcode of Life Data System (http// Mol Ecol Notes 2007; 7: 355-364
  • 79 Little DP, Jeanson ML. DNA barcoding of saw palmetto herbal dietary supplements. Sci Rep 2013; 3: 3518
  • 80 Wallace LJ, Boilard SMAL, Eagle HC, Spall JC, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Inter 2012; 49: 446-451
  • 81 Lou SK, Wong KL, Li M, But PP, Tsui SK, Shaw PC. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics 2010; 11: 402
  • 82 Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 2012; 8: e10002657
  • 83 Newmaster SG, Grguic M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 2013; 11: 222
  • 84 OʼConnor A. Herbal supplements are often not what they seem. New York Times. November 3, 2013. Available at Accessed April 9, 2014
  • 85 OʼConnor A. New York attorney general targets supplements at major retailers. New York Times. February 3, 2015. Available at Accessed February 3, 2015
  • 86 Hiltaik M. Dietary supplements: the deadly toll of deregulation. Los Angeles Times. Available at Accessed April 9, 2014
  • 87 Byard RW. A review of the potential forensic significance of traditional herbal medicines. J Forensic Sci 2010; 55: 89-92
  • 88 Campbell N, Clark JP, Stecher VJ, Thomas JW, Callanan AC, Donnelly BF, Goldstein I, Kaminetsky JC. Adulteration of purported herbal and natural sexual performance enhancement dietary supplements with synthetic phosphodiesterase type 5 inhibitors. J Sex Med 2013; 10: 1842-1849
  • 89 Centers for Disease Control and Prevention (CDC). Lead poisoning in pregnant women who used Ayurvedic medications from India–New York City, 2011–2012. MMWR Morb Mortal Wkly Rep 2012; 61: 641-646
  • 90 National Cancer Institute. PDQ® PC-SPES. Bethesda, MD: National Cancer Institute. Date last modified 02/05/2014. Available at Accessed December 5, 2014
  • 91 Teschke R, Wolff A, Frenzel C, Schulze J. Review article: herbal hepatotoxicity–an update on traditional Chinese medicine preparations. Aliment Pharmacol Ther 2014; 40: 32-50
  • 92 Posadzki P, Watson L, Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews. Eur J Clin Pharmacol 2013; 69: 295-307
  • 93 Cohen PA. Hazards of hindsight–monitoring the safety of nutritional supplements. N Engl J Med 2014; 370: 1277-1280
  • 94 Bayer RJ. Phylogenetic inferences in Antennaria (Asteraceae: Inuleae: Gnaphaliinae) based on sequences from the nuclear ribosomal DNA internal transcribed spacers (ITS). Available at Accessed July 21, 2014