Planta Med 2015; 81(06): 525-532
DOI: 10.1055/s-0035-1545720
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 11β-Hydroxysteroid Dehydrogenase 1

Anna Vuorinen
1   Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innsbruck, Austria
,
Julia Seibert
2   Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
,
Vassilios P. Papageorgiou
3   Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
,
Judith M. Rollinger
4   Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
,
Alex Odermatt
2   Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland
,
Daniela Schuster
1   Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Computer Aided Molecular Design Group, University of Innsbruck, Innsbruck, Austria
,
Andreana N. Assimopoulou
3   Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 07. Juli 2014
revised 15. Januar 2015

accepted 26. Januar 2015

Publikationsdatum:
17. März 2015 (online)

Abstract

In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum.

 
  • References

  • 1 Browicz K. Pistacia lentiscus cv. chia (Anacardiaceae) on Chios island. Plant Syst Evol 1987; 155: 189-195
  • 2 Assimopoulou AN, Papageorgiou VP. Oleoresins from Pistacia species: chemistry and biology. In: Govil JN, Singh VK, Siddiqui NT, editors Recent progress in medicinal plants natural product II. Houston: Studium Press, LLC; 2007: 145-202
  • 3 Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. TheScientificWorldJo 2013; 2013: 1-33
  • 4 Assimopoulou AN, Papageorgiou VP. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. chia . Biomed Chromatogr 2005; 19: 285-311
  • 5 Rang HP, Dale MM, Ritter JM, Moore PK. The endocrine pancreas and the control of blood glucose. In: Hunter L, editor Pharmacology. 5th edition. London: Churchill Livingstone; 2003: 380-393
  • 6 Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409-435
  • 7 Petersen RK, Christensen KB, Assimopoulou AN, Fretté X, Papageorgiou VP, Kristiansen K, Kouskoumvekaki I. Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 2011; 25: 107-116
  • 8 Kokolakis AK. Analysis and study of the biological activity of the constituents of the resin from the plant Pistacia lentiscus var. chia (Chios mastic gum) [Master Thesis]. Heraklion: University of Crete; 2008
  • 9 Georgiadis I, Karatzas T, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A, Tzanetakou IP, Katsilambros N, Perrea DN. Evaluation of Chios mastic gum on lipid and glucose metabolism in diabetic mice. J Med Food 2014; 17: 393-399
  • 10 Rang HP, Dale MM, Ritter JM, Moore PK. The pituitary and adrenal cortex. In: Hunter L, editor Pharmacology. 5th edition. London: Churchill Livingstone; 2003: 409-427
  • 11 Krozowski Z. The 11β-hydroxysteroid dehydrogenases: functions and physiological effects. Mol Cell Endocrinol 1999; 151: 121-127
  • 12 Atanasov AG, Nashev LG, Schweizer RAS, Frick C, Odermatt A. Hexose-6-phosphate dehydrogenase determines the reaction direction of 11β-hydroxysteroid dehydrogenase type 1 as an oxoreductase. FEBS Lett 2004; 571: 129-133
  • 13 Bánhegyi G, Benedetti A, Fulceri R, Senesi S. Cooperativity between 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the lumen of the endoplasmic reticulum. J Biol Chem 2004; 279: 27017-27021
  • 14 Arnold P, Tam S, Yan L, Baker ME, Frey FJ, Odermatt A. Glutamate-115 renders specificity of human 11β-hydroxysteroid dehydrogenase type 2 for the cofactor NAD+. Mol Cell Endocrinol 2003; 201: 177-187
  • 15 Ricketts ML, Verhaeg JM, Bujalska I, Howie AJ, Rainey WE, Stewart PM. Immunohistochemical localization of type 1 11β-hydroxysteroid dehydrogenase in human tissues. J Clin Endocrinol Metab 1998; 83: 1325-1335
  • 16 Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: An overview. Mol Cell Endocrinol 2012; 350: 168-186
  • 17 Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 2013; 34: 525-555
  • 18 Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28: 629-636
  • 19 Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166-2170
  • 20 Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B, Seckl JR, Mullins JJ. Metabolic syndrome without obesity: Hepatic overexpression of 11β-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci U S A 2004; 101: 7088-7093
  • 21 Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, Best R, Brown R, Edwards CRW, Seckl JR, Mullins JJ. 11β-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci U S A 1997; 94: 14924-14929
  • 22 Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R. 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 2005; 202: 517-527
  • 23 Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CRW, Seckl JR, Mullins JJ. Hypertension in mice lacking 11β-hydroxysteroid dehydrogenase type 2. J Clin Invest 1999; 103: 683-689
  • 24 Barf T, Vallgårda J, Emond R, Häggström C, Kurz G, Nygren A, Larwood V, Mosialou E, Axelsson K, Olsson R, Engblom L, Edling N, Rönquist-Nii Y, Öhman B, Alberts P, Abrahmsén L. Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11β-hydroxysteroid dehydrogenase type 1. J Med Chem 2002; 45: 3813-3815
  • 25 Xu Z, Tice CM, Zhao W, Cacatian S, Ye YJ, Singh SB, Lindblom P, McKeever BM, Krosky PM, Kruk BA, Berbaum J, Harrison RK, Johnson JA, Bukhtiyarov Y, Panemangalore R, Scott BB, Zhao Y, Bruno JG, Togias J, Guo J, Guo R, Carroll PJ, McGeehan GM, Zhuang L, He W, Claremon DA. Structure-based design and synthesis of 1,3-oxazinan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase type 1. J Med Chem 2011; 54: 6050-6062
  • 26 Böhme T, Engel CK, Farjot G, Güssregen S, Haack T, Tschank G, Ritter K. 1,1-Dioxo-5,6-dihydro-[4,1,2]oxathiazines, a novel class of 11β-HSD1 inhibitors for the treatment of diabetes. Bioorg Med Chem Lett 2013; 23: 4685-4691
  • 27 Rollinger JM, Kratschmar DV, Schuster D, Pfisterer PH, Gumy C, Aubry EM, Brandstötter S, Stuppner H, Wolber G, Odermatt A. 11β-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorg Med Chem 2010; 18: 1507-1515
  • 28 Kratschmar DV, Vuorinen A, Da Cunha T, Wolber G, Classen-Houben D, Doblhoff O, Schuster D, Odermatt A. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol 2011; 125: 129-142
  • 29 Rollinger JM, Stuppner H, Langer T. Virtual screening for the discovery of bioactive natural products. Prog Drug Res 2008; 65: 213-249
  • 30 Wolber G, Rollinger JM. Virtual screening and target fishing for natural products using 3D pharmacophores. In: Jacoby E, editor Computational chemogenomics. Boca Raton: Pan Stanford Publishing; 2013: 117-139
  • 31 Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations). Pure Appl Chem 1998; 70: 1129-1143
  • 32 Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A. The discovery of new 11β-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 2006; 49: 3454-3466
  • 33 Vuorinen A, Nashev LG, Odermatt A, Rollinger JM, Schuster D. Pharmacophore model refinement for 11β-hydroxysteroid dehydrogenase inhibitors: search for modulators of intracellular glucocorticoid concentrations. Mol Inf 2014; 33: 15-25
  • 34 Rollinger JM, Steindl TM, Schuster D, Kirchmair J, Anrain K, Ellmerer EP, Langer T, Stuppner H, Wutzler P, Schmidtke M. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein. J Med Chem 2008; 51: 842-851
  • 35 Papageorgiou VP, Bakola-Christianopoulou MN, Apazidou KK, Psarros EE. Gas chromatographic-mass spectroscopic analysis of the acidic triterpenic fraction of mastic gum. J Chromatogr A 1997; 769: 263-273
  • 36 Ramírez-Espinosa JJ, García-Jiménez S, Rios MY, Medina-Franco JL, López-Vallejo F, Webster SP, Binnie M, Ibarra-Barajas M, Ortiz-Andrade R, Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine 2013; 20: 571-576
  • 37 Blum A, Favia AD, Maser E. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors with oleanan and ursan scaffolds. Mol Cell Endocrinol 2009; 301: 132-136
  • 38 Hu GX, Lin H, Lian QQ, Zhou SH, Guo J, Zhou HY, Chu Y, Ge RS. Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 1: improving lipid profiles in high-fat-diet-treated rats. PLoS One 2013; 8: e49976
  • 39 Gaware R, Khunt R, Czollner L, Stanetty C, Cunha TD, Kratschmar DV, Odermatt A, Kosma P, Jordis U, Claßen-Houben D. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg Med Chem 2011; 19: 1866-1880
  • 40 Schweizer RAS, Atanasov AG, Frey BM, Odermatt A. A rapid screening assay for inhibitors of 11β-hydroxysteroid dehydrogenases (11β-HSD): flavanone selectively inhibits 11β-HSD1 reductase activity. Mol Cell Endocrinol 2003; 212: 41-49
  • 41 Assimopoulou AN, Ganzera M, Stuppner H, Papageorgiou VP. Determination of penta- and tetra- cyclic triterpenes in Pistacia lentiscus resin. Planta Med 2009; 75: PA37
  • 42 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindayalov IN, Bourne PE. The Protein data bank. Nucleic Acids Res 2000; 28: 235-242
  • 43 Wu X, Kavanagh K, Svensson S, Elleby B, Hult M, Von Delft F, Marsden B, Jornvall H, Abrahamsen L, Oppermann U. The high resolution structures of human, murine and guinea pig 11-beta-hydroxysteroid dehydrogenase type 1 reveal critical differences in active site architecture. DOI: 10.2210/pdb2bel/pdb. Available online: http://www.rcsb.org/pdb/explore.do?structureId=2bel
  • 44 Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267: 727-748
  • 45 Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins 2003; 52: 609-623