Ultraschall Med 2016; 37(06): 584-590
DOI: 10.1055/s-0034-1399152
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

In Vivo Measurement of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography

In-vivo-Messung der Elastizität von Hirntumoren mittels intraoperativer Scherwellen-Elastografie
D. Chauvet*
1   Neurosurgery Department, Pitié-Salpêtrière Hospital, 47–83 boulevard de l’Hôpital, Paris, France
,
M. Imbault*
2   Langevin Institute, ESPCI ParisTech, PSL Research University, Paris, France
,
L. Capelle
1   Neurosurgery Department, Pitié-Salpêtrière Hospital, 47–83 boulevard de l’Hôpital, Paris, France
,
C. Demene
2   Langevin Institute, ESPCI ParisTech, PSL Research University, Paris, France
,
M. Mossad
2   Langevin Institute, ESPCI ParisTech, PSL Research University, Paris, France
,
C. Karachi
1   Neurosurgery Department, Pitié-Salpêtrière Hospital, 47–83 boulevard de l’Hôpital, Paris, France
,
A.-L. Boch
1   Neurosurgery Department, Pitié-Salpêtrière Hospital, 47–83 boulevard de l’Hôpital, Paris, France
,
J.-L. Gennisson
2   Langevin Institute, ESPCI ParisTech, PSL Research University, Paris, France
,
M. Tanter
2   Langevin Institute, ESPCI ParisTech, PSL Research University, Paris, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

29. September 2014

23. Januar 2015

Publikationsdatum:
15. April 2015 (online)

Abstract

Purpose: Objective Shear wave elastography (SWE) enabled living tissue assessment of stiffness. This is routinely used for breast, thyroid and liver diseases, but there is currently no data for the brain. We aim to characterize elasticity of normal brain parenchyma and brain tumors using SWE.

Materials and Methods: Patients with scheduled brain tumor removal were included in this study. In addition to standard ultrasonography, intraoperative SWE using an ultrafast ultrasonic device was used to measure the elasticity of each tumor and its surrounding normal brain. Data were collected by an investigator blinded to the diagnosis. Descriptive statistics, box plot analysis as well as intraoperator and interoperator reproducibility analysis were also performed.

Results: 63 patients were included and classified into four main types of tumor: meningiomas, low-grade gliomas, high-grade gliomas and metastasis. Young’s Modulus measured by SWE has given new insight to differentiate brain tumors: 33.1 ± 5.9 kPa, 23.7 ± 4.9 kPa, 11.4 ± 3.6 kPa and 16.7 ± 2.5 kPa, respectively, for the four subgroups. Normal brain tissue has been characterized by a reproducible mean stiffness of 7.3 ± 2.1 kPa. Moreover, low-grade glioma stiffness is different from high-grade glioma stiffness (p = 0.01) and normal brain stiffness is very different from low-grade gliomas stiffness (p < 0.01).

Conclusion: This study demonstrates that there are significant differences in elasticity among the most common types of brain tumors. With intraoperative SWE, neurosurgeons may have innovative information to predict diagnosis and guide their resection.

Zusammenfassung

Ziel: Die Scherwellen-Elastografie (SWE) ermöglicht die Einschätzung der Steifigkeit von lebendem Gewebe. Sie wird routinemäßig bei Brust-, Schilddrüsen- und Lebererkrankungen angewandt, am Gehirn ist die Datenlage derzeit hingegen schlecht. Unser Ziel ist die Charakterisierung der Elastizität von normalem Hirnparenchym und von Hirntumoren mittels SWE.

Material und Methoden: Patienten mit geplanter Entfernung des Hirntumors wurden in die Studie eingeschlossen. Zusätzlich zum Routine-Ultraschall wurde die intraoperative SWE mittels UltraFAST-Ausstattung durchgeführt, um die Elastizität jedes Tumors und des umgebenden normalen Gewebes zu bestimmen. Vergleichende statistische Verfahren, Box-Plot-Analysen sowie die Auswertung der Intra- und Inter-Operator-Reproduzierbarkeit wurden ebenfalls durchgeführt.

Ergebnis: 63 Patienten wurden in die vier Haupttumortypen unterteilt: Meningeome, niedriggradige Gliome, hochgradige Gliome und Metastasen. Der mittels SWE gemessene Elastizitätskoeffizient lag für diese 4 Tumorgruppen bei 33,1 ± 5,9 kPa, 23,7 ± 4,9 kPa, 11,4 ± 3,6 kPa und 16,7 ± 2,5 kPa. Das normale Hirngewebe wurde durch eine reproduzierbare mittlere Steifigkeit von 7,3 ± 2,1 kPa charakterisiert. Darüber zeigt sich ein Unterschied in der Steifigkeit von niedriggradigen und hochgradigen Gliomen (p = 0,01), ebenso unterscheidet sich die Steifigkeit von normalem Hirngewebe sehr stark von der niedriggradiger Gliome (p < 0,01).

Schlussfolgerung: Es bestehen signifikante Unterschiede in der Elastizität der häufigsten Arten von Hirntumoren. Die intraoperative SWE kann dem Neurochirurgen neuartige Informationen für die Diagnosestellung und Unterstützung der Resektion bieten.

* These authors contributed equally to this work (as co-first authors).


 
  • References

  • 1 Selbekk T, Jakola AS, Solheim O et al. Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 2013; 155: 973-980
  • 2 Unsgaard G, Gronningsaeter A, Ommedal S et al. Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 2002; 51: 402-411 ; discussion 411–412
  • 3 Jakola AS, Unsgård G, Solheim O. Quality of life in patients with intracranial gliomas: the impact of modern image-guided surgery. J Neurosurg 2011; 114: 1622-1630
  • 4 Lindner D, Trantakis C, Renner C et al. Application of intraoperative 3D ultrasound during navigated tumor resection. Minim Invasive Neurosurg MIN 2006; 49: 197-202
  • 5 Rasmussen Jr IA , Lindseth F, Rygh OM et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 2007; 149: 365-378
  • 6 Shinoura N, Takahashi M, Yamada R. Delineation of brain tumor margins using intraoperative sononavigation: Implications for tumor resection. J Clin Ultrasound 2006; 34: 177-183
  • 7 Bamber J, Cosgrove D, Dietrich C et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall in Med – Eur J Ultrasound 2013; 34: 169-184
  • 8 Sarvazyan AP, Rudenko OV, Swanson SD et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 1998; 24: 1419-1435
  • 9 Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61: 102-119
  • 10 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 396-409
  • 11 Gennisson JL, Deffieux T, Fink M et al. Ultrasound elastography: Principles and techniques. Diagn Interv Imaging 2013; 94: 487-495
  • 12 Chan HW, Pressler R, Uff C et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: Intraoperative ShearWave Elastography. Epilepsia 2014; DOI: 10.1111/epi.12562.
  • 13 Cosgrove D, Piscaglia F, Bamber J et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography.Part 2: Clinical Applications. Ultraschall in Med – Eur J Ultrasound 2013; 34: 238-253
  • 14 Ferraioli G, Parekh P, Levitov AB et al. Shear Wave Elastography for Evaluation of Liver Fibrosis. J Ultrasound Med 2014; 33: 197-203
  • 15 Berg WA, Cosgrove DO, Doré CJ et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262: 435-449
  • 16 Cosgrove DO, Berg WA, Doré CJ. the BE1 Study Group et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol 2012; 22: 1023-1032
  • 17 Bhatia KSS, Tong CSL, Cho CCM et al. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol 2012; 22: 2397-2406
  • 18 Barbosa BJAP, Mariano ED, Batista CM et al. Intraoperative assistive technologies and extent of resection in glioma surgery: a systematic review of prospective controlled studies. Neurosurg Rev 2014; DOI: 10.1007/s10143-014-0592-0.
  • 19 Wu JS, Gong X, Song YY et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery. 2014; 61: 145-154
  • 20 Puppa AD, Ciccarino P, Lombardi G et al. 5-Aminolevulinic Acid Fluorescence in High Grade Glioma Surgery: Surgical Outcome, Intraoperative Findings, and Fluorescence Patterns. BioMed Res Int 2014; 2014: e232561
  • 21 Scholz M, Noack V, Pechlivanis I et al. Vibrography during tumor neurosurgery. J Ultrasound Med Off J Am Inst Ultrasound Med 2005; 24: 985-992
  • 22 Ohue S, Kumon Y, Nagato S et al. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir (Tokyo) 2010; 50: 291-300
  • 23 Coenen VA, Krings T, Weidemann J et al. Sequential visualization of brain and fiber tract deformation during intracranial surgery with three-dimensional ultrasound: an approach to evaluate the effect of brain shift. Neurosurgery 2005; 56: 133-141 ; discussion 133–141
  • 24 Sommer B, Grummich P, Coras R et al. Integration of functional neuronavigation and intraoperative MRI in surgery for drug-resistant extratemporal epilepsy close to eloquent brain areas. Neurosurg Focus 2013; 34: E4
  • 25 Murphy MC, Huston 3rd J, Jack CR Jr et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging JMRI 2011; 34: 494-498
  • 26 Lipp A, Trbojevic R, Paul F et al. Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. NeuroImage Clin 2013; 3: 381-387
  • 27 Purkayastha S, Sorond F. Transcranial Doppler Ultrasound: Technique and Application. Semin Neurol 2013; 32: 411-420
  • 28 Tanter M, Thomas JL, Fink M. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 1998; 103: 2403-2410
  • 29 Osmanski BF, Montaldo G, Tanter M et al. Aberration correction by time reversal of moving speckle noise. IEEE Trans Ultrason Ferroelectr Freq Control 2012; 59: 1575-1583
  • 30 Lindsey BD, Smith SW. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2013; 60: 463-480