Semin Liver Dis 2015; 35(01): 081-088
DOI: 10.1055/s-0034-1397352
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Adeno-Associated Virus-Mediated MicroRNA Delivery and Therapeutics

Jun Xie
1   Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
2   Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts
,
Daniel Robert Burt
1   Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
3   Saint Louis University School of Medical, St. Louis, Missouri
,
Guangping Gao
1   Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
2   Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, Massachusetts
4   State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

MicroRNAs (miRNAs) are 20 to 24 nt long, single-stranded RNAs that repress gene expression. Dysregulation of miRNA expression is associated with many human diseases. Modulating the level of endogenous miRNA alters gene profiling and can achieve therapeutic benefits. Here the authors review currently used methods of altering miRNA activity in vivo. They focus on the delivery of miRNAs and miRNA inhibitors using recombinant adeno-associated virus (rAAV). In general, rAAV-mediated miRNA inhibition or overexpression provides a simple, efficient, and informative way to study miRNA function in mammals. This method also provides the opportunity to explore potential miRNA therapeutics for many diseases.

 
  • References

  • 1 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120 (1) 15-20
  • 2 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6 (5) 376-385
  • 3 Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10 (12) 1957-1966
  • 4 Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13 (12) 1097-1101
  • 5 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (5) 843-854
  • 6 Calin GA, Dumitru CD, Shimizu M , et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99 (24) 15524-15529
  • 7 Calin GA, Sevignani C, Dumitru CD , et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101 (9) 2999-3004
  • 8 Johnson SM, Grosshans H, Shingara J , et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120 (5) 635-647
  • 9 Trang P, Medina PP, Wiggins JF , et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29 (11) 1580-1587
  • 10 Ji J, Shi J, Budhu A , et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361 (15) 1437-1447
  • 11 Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002; 99 (18) 11854-11859
  • 12 Kota J, Chivukula RR, O'Donnell KA , et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137 (6) 1005-1017
  • 13 van Rooij E, Sutherland LB, Liu N , et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103 (48) 18255-18260
  • 14 Thum T, Gross C, Fiedler J , et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456 (7224) 980-984
  • 15 Montgomery RL, Hullinger TG, Semus HM , et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124 (14) 1537-1547
  • 16 van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316 (5824) 575-579
  • 17 Grueter CE, van Rooij E, Johnson BA , et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 2012; 149 (3) 671-683
  • 18 Poy MN, Hausser J, Trajkovski M , et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 2009; 106 (14) 5813-5818
  • 19 Rayner KJ, Suárez Y, Dávalos A , et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328 (5985) 1570-1573
  • 20 Rayner KJ, Sheedy FJ, Esau CC , et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121 (7) 2921-2931
  • 21 Rayner KJ, Esau CC, Hussain FN , et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478 (7369) 404-407
  • 22 Chang J, Nicolas E, Marks D , et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004; 1 (2) 106-113
  • 23 Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309 (5740) 1577-1581
  • 24 Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM. Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci U S A 2013; 110 (5) 1881-1886
  • 25 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 26 Ventura A, Young AG, Winslow MM , et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132 (5) 875-886
  • 27 Kuhnert F, Mancuso MR, Hampton J , et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008; 135 (24) 3989-3993
  • 28 Esau C, Davis S, Murray SF , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3 (2) 87-98
  • 29 Lanford RE, Hildebrandt-Eriksen ES, Petri A , et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327 (5962) 198-201
  • 30 Elmén J, Lindow M, Schütz S , et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452 (7189) 896-899
  • 31 Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4 (9) 721-726
  • 32 Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res 2009; 37 (6) e43
  • 33 Gentner B, Schira G, Giustacchini A , et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009; 6 (1) 63-66
  • 34 Xie J, Ameres SL, Friedline R , et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods 2012; 9 (4) 403-409
  • 35 McCarty DM, Ryan JH, Zolotukhin S, Zhou X, Muzyczka N. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol 1994; 68 (8) 4998-5006
  • 36 Snyder RO, Im DS, Ni T, Xiao X, Samulski RJ, Muzyczka N. Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein. J Virol 1993; 67 (10) 6096-6104
  • 37 Dubielzig R, King JA, Weger S, Kern A, Kleinschmidt JA. Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes. J Virol 1999; 73 (11) 8989-8998
  • 38 Kyöstiö SR, Owens RA, Weitzman MD, Antoni BA, Chejanovsky N, Carter BJ. Analysis of adeno-associated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J Virol 1994; 68 (5) 2947-2957
  • 39 Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 1966; 55 (6) 1467-1474
  • 40 Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 1981; 40 (1) 241-247
  • 41 Rabinowitz JE, Samulski RJ. Building a better vector: the manipulation of AAV virions. Virology 2000; 278 (2) 301-308
  • 42 Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 2012; 507: 229-254
  • 43 Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012; 20 (4) 699-708
  • 44 Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12 (5) 341-355
  • 45 Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med 2008; 10 (7) 717-733
  • 46 Kotin RM, Siniscalco M, Samulski RJ , et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 1990; 87 (6) 2211-2215
  • 47 Samulski RJ, Zhu X, Xiao X , et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10 (12) 3941-3950
  • 48 Penaud-Budloo M, Le Guiner C, Nowrouzi A , et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 2008; 82 (16) 7875-7885
  • 49 Li H, Malani N, Hamilton SR , et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood 2011; 117 (12) 3311-3319
  • 50 Kaeppel C, Beattie SG, Fronza R , et al. A largely random AAV integration profile after LPLD gene therapy. Nat Med 2013; 19 (7) 889-891
  • 51 Zhong L, Malani N, Li M , et al. Recombinant adeno-associated virus integration sites in murine liver after ornithine transcarbamylase gene correction. Hum Gene Ther 2013; 24 (5) 520-525
  • 52 Bryant LM, Christopher DM, Giles AR , et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev 2013; 24 (2) 55-64
  • 53 Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003; 10 (26) 2105-2111
  • 54 McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003; 10 (26) 2112-2118
  • 55 Kumar MS, Erkeland SJ, Pester RE , et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 2008; 105 (10) 3903-3908
  • 56 Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 2013; 19 (7) 892-900
  • 57 Bak RO, Hollensen AK, Primo MN, Sørensen CD, Mikkelsen JG. Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors. RNA 2013; 19 (2) 280-293
  • 58 Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72 (3) 2224-2232
  • 59 Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc 2006; 1 (3) 1412-1428
  • 60 Gao G, Sena-Esteves M. Molecular Cloning: A Laboratory Manual Introducing Genes into Mammalian Cells: Viral Vectors. Vol. 2. New York: Cold Spring Harbor Laboratory Press; 2012: 1209-1313
  • 61 Zhang H, Yang B, Mu X , et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 2011; 19 (8) 1440-1448
  • 62 Yang B, Li S, Wang H , et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 2014; 22 (7) 1299-1309
  • 63 Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27 (1) 59-65
  • 64 Miyazaki Y, Adachi H, Katsuno M , et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 2012; 18 (7) 1136-1141
  • 65 Hsu SH, Wang B, Kota J , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (8) 2871-2883
  • 66 Tsai WC, Hsu SD, Hsu CS , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (8) 2884-2897
  • 67 Dey BK, Gagan J, Yan Z, Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 2012; 26 (19) 2180-2191
  • 68 van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012; 11 (11) 860-872
  • 69 Kutay H, Bai S, Datta J , et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 2006; 99 (3) 671-678
  • 70 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40) 3526-3536
  • 71 Tsai WC, Hsu PW, Lai TC , et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 2009; 49 (5) 1571-1582
  • 72 Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 2012; 143 (1) 246-56.e8
  • 73 Dahmani R, Just PA, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2011; 35 (11) 709-713
  • 74 Huse JT, Brennan C, Hambardzumyan D , et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23 (11) 1327-1337
  • 75 Grimm D. The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2011; 2: 8
  • 76 Grimm D, Streetz KL, Jopling CL , et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441 (7092) 537-541
  • 77 Grimm D, Wang L, Lee JS , et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010; 120 (9) 3106-3119
  • 78 Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009; 17 (1) 169-175
  • 79 McBride JL, Boudreau RL, Harper SQ , et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 2008; 105 (15) 5868-5873