Semin Liver Dis 2015; 35(01): 003-011
DOI: 10.1055/s-0034-1397344
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Overview of MicroRNA Biology

Ashley M. Mohr
1   Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
,
Justin L. Mott
1   Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of messenger RNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA. However, microRNA function is more complicated and nuanced than this “on–off” model would suggest. Further, many microRNA targets are themselves noncoding RNAs. In this review, the authors discuss the role of microRNAs in shaping the proteome of the cell in a way that is consistent with microRNA involvement in a highly regulated conversation, sensitive to outside influence and internal feedback.

 
  • References

  • 1 Valadkhan S, Gunawardane LS. Role of small nuclear RNAs in eukaryotic gene expression. Essays Biochem 2013; 54: 79-90
  • 2 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (2) 215-233
  • 3 Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003; 4 (6) 457-467
  • 4 Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20 (23) 6877-6888
  • 5 Martinez J, Tuschl T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 2004; 18 (9) 975-980
  • 6 Giraldez AJ, Mishima Y, Rihel J , et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312 (5770) 75-79
  • 7 Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455 (7209) 64-71
  • 8 Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455 (7209) 58-63
  • 9 Landgraf P, Rusu M, Sheridan R , et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129 (7) 1401-1414
  • 10 Reinhart BJ, Slack FJ, Basson M , et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature 2000; 403 (6772) 901-906
  • 11 Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15 (2) 185-197
  • 12 Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466 (7308) 835-840
  • 13 Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 2008; 105 (5) 1608-1613
  • 14 Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318 (5858) 1931-1934
  • 15 Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125 (6) 1111-1124
  • 16 Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 2013; 1829 (6–7) 666-679
  • 17 Ma F, Liu X, Li D , et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 2010; 184 (11) 6053-6059
  • 18 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120 (1) 15-20
  • 19 Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27 (1) 91-105
  • 20 Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol 2012; 19 (3) 321-327
  • 21 Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 2010; 38 (6) 789-802
  • 22 Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 2013; 153 (3) 654-665
  • 23 Banzhaf-Strathmann J, Edbauer D. Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun Signal 2014; 12: 30
  • 24 Nam JW, Rissland OS, Koppstein D , et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 2014; 53 (6) 1031-1043
  • 25 Krek A, Grün D, Poy MN , et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37 (5) 495-500
  • 26 Hsu PW, Huang HD, Hsu SD , et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 2006; 34 (Database issue): D135-D139
  • 27 Burk U, Schubert J, Wellner U , et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9 (6) 582-589
  • 28 Michlewski G, Guil S, Semple CA, Cáceres JF. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008; 32 (3) 383-393
  • 29 Gantier MP, McCoy CE, Rusinova I , et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 2011; 39 (13) 5692-5703
  • 30 Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011; 3: 15
  • 31 Chen X, Ba Y, Ma L , et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10) 997-1006
  • 32 Li L, Masica D, Ishida M , et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 2014; 60 (3) 896-907
  • 33 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12 (9) 735-739
  • 34 Jopling C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol 2012; 9 (2) 137-142
  • 35 Schratt GM, Tuebing F, Nigh EA , et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439 (7074) 283-289
  • 36 Nielsen S, Scheele C, Yfanti C , et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol 2010; 588 (Pt 20): 4029-4037
  • 37 Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30 (6) 371-380
  • 38 Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68 (19) 8164-8172
  • 39 Kim K, Vinayagam A, Perrimon N. A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Reports 2014; 7 (6) 2066-2077
  • 40 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (6) 654-659
  • 41 Zhang Y, Liu D, Chen X , et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39 (1) 133-144
  • 42 Yuan Z, Sun X, Liu H, Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS ONE 2011; 6 (3) e17666
  • 43 Olive V, Jiang I, He L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 2010; 42 (8) 1348-1354
  • 44 Ventura A, Young AG, Winslow MM , et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132 (5) 875-886
  • 45 Rissland OS, Norbury CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009; 16 (6) 616-623
  • 46 Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 2008; 32 (2) 276-284
  • 47 Heo I, Ha M, Lim J , et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 2012; 151 (3) 521-532
  • 48 Newman MA, Mani V, Hammond SM. Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA 2011; 17 (10) 1795-1803
  • 49 Jones MR, Quinton LJ, Blahna MT , et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 2009; 11 (9) 1157-1163
  • 50 Katoh T, Sakaguchi Y, Miyauchi K , et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 2009; 23 (4) 433-438
  • 51 Boele J, Persson H, Shin JW , et al. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A 2014; 111 (31) 11467-11472
  • 52 Yang W, Chendrimada TP, Wang Q , et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13 (1) 13-21
  • 53 Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 2007; 8 (8) 763-769
  • 54 Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007; 315 (5815) 1137-1140
  • 55 Wu H, Ye C, Ramirez D, Manjunath N. Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS ONE 2009; 4 (10) e7566
  • 56 Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138 (4) 673-684
  • 57 Tranter M, Helsley RN, Paulding WR , et al. Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation. J Biol Chem 2011; 286 (34) 29828-29837
  • 58 Boutet SC, Cheung TH, Quach NL , et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 2012; 10 (3) 327-336
  • 59 Ribas J, Ni X, Castanares M , et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res 2012; 40 (14) 6821-6833
  • 60 Jung HJ, Coffinier C, Choe Y , et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A 2012; 109 (7) E423-E431
  • 61 Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J 2007; 26 (3) 775-783
  • 62 Tierling S, Dalbert S, Schoppenhorst S , et al. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics 2006; 87 (2) 225-235
  • 63 Melamed Z, Levy A, Ashwal-Fluss R , et al. Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions. Mol Cell 2013; 50 (6) 869-881
  • 64 Chin LJ, Ratner E, Leng S , et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68 (20) 8535-8540
  • 65 Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 2014; 42 (Database issue): D86-D91
  • 66 Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics 2012; 13: 44
  • 67 Calin GA, Pekarsky Y, Croce CM. The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2007; 20 (3) 425-437
  • 68 Han Y, Liu Y, Zhang H , et al. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett 2013; 587: 3875-3882
  • 69 Wang T, Yuan J, Feng N , et al. Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumour Biol 2014; [e-pub ahead of print]
  • 70 Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 2012; 486 (7404) 541-544
  • 71 Liz J, Portela A, Soler M , et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 2014; 55 (1) 138-147
  • 72 Braconi C, Kogure T, Valeri N , et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30 (47) 4750-4756
  • 73 Paraskevopoulou MD, Georgakilas G, Kostoulas N , et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 2013; 41 (Database issue): D239-D245