Planta Med 2015; 81(04): 259-271
DOI: 10.1055/s-0034-1396313
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Prospects of Boswellic Acids as Potential Pharmaceutics

Zhiyong Du*
1   Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
,
Zhenli Liu*
1   Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
,
Zhangchi Ning
2   School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing Municipal Key Laboratory for Basic Research of Chinese Medicine, Beijing, China
,
Yuanyan Liu
2   School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing Municipal Key Laboratory for Basic Research of Chinese Medicine, Beijing, China
,
Zhiqian Song
1   Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
,
Chun Wang
1   Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
,
Aiping Lu
3   Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
4   School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
› Author Affiliations
Further Information

Publication History

received 03 June 2014
revised 22 October 2014

accepted 07 January 2015

Publication Date:
25 February 2015 (online)

Abstract

Boswellic acids have long been considered the main bioactive components of frankincense, and many studies in vitro and in animals as well as several clinical studies have confirmed their various bioactivities. In particular, a large number of mechanistic studies have confirmed their anti-inflammatory and antitumor activities. However, not every boswellic acid exhibits a satisfactory pharmacological performance, which depends on the chemical structure and functional groups of the acid. To enhance the pharmacological values of boswellic acids, derivatization has been specifically applied with the aim of discovering more active derivatives of BAs. In addition, the preliminary pharmacokinetic studies of these compounds using various standard methods show their poor bioavailability in humans and rodents, which has led to questions of their pharmacological relevance and potentially limits their use in clinical practice and pharmaceutical development. To improve these effects, some approaches have shown some improvements in effectiveness, and the new formula compatibility approach is considered a very reasonable method for improving the bioavailability of boswellic acids.

* These authors contributed equally to this work.


 
  • References

  • 1 Mathe C, Culioli G, Archier P, Vieillescazes C. High-performance liquid chromatographic analysis of triterpenoids in commercial frankincense. Chromatographia 2004; 60: 493-499
  • 2 Hasson SS, Al-Balush MS, Sallam TA, Idris MA, Habbal O, Al-Jabri AA. In vitro antibacterial activity of three medicinal plants-Boswellia (Luban) species. Asian Pac J Trop Biomed 2011; 1: 178-182
  • 3 Atta-ur-Rahman, Naz H, Fadimatou. Makhmoor T, Yasin A, Fatima N, Ngounou FN, Kimbu SF, Sondengam BL, Choudhary MI. Bioactive constituents from Boswellia papyrifera. J Nat Prod 2005; 68: 189-193
  • 4 Moussaieff A, Mechoulam R. Boswellia resin: from religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. J Pharm Pharmacol 2009; 61: 1281-1293
  • 5 Siddiqui MZ. Boswellia serrata, a potential anti-inflammatory agent: an overview. Indian J Pharm Sci 2011; 73: 255-261
  • 6 Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med 2006; 72: 1100-1116
  • 7 Ernst E. Frankincense: systematic review. BMJ 2008; 337: a2813
  • 8 Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, Xu X, Liu Y. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J 2013; 7: 153
  • 9 Liu JJ, Toy WC, Liu S, Cheng A, Lim BK, Subramaniam T, Sum CF, Lim SC. Acetyl-keto-beta-boswellic acid induces lipolysis in mature adipocytes. Biochem Biophys Res Commun 2013; 431: 192-196
  • 10 Raja AF, Ali F, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-beta-boswellic acid from Boswellia serrata . BMC Microbiol 2011; 11: 54
  • 11 Raja AF, Ali F, Khan IA, Shawl AS, Arora DS. Acetyl-11-keto-beta-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res Notes 2011; 4: 406
  • 12 Gerhardt H, Seifert F, Buvari P, Vogelsang H, Repges R. Therapy of active Crohn disease with Boswellia serrata extract H 15. Z Gastroenterol 2001; 39: 11-17
  • 13 Madisch A, Miehlke S, Eichele O, Mrwa J, Bethke B, Kuhlisch E, Bastlein E, Wilhelms G, Morgner A, Wigginghaus B, Stolte M. Boswellia serrata extract for the treatment of collagenous colitis. A double-blind, randomized, placebo-controlled, multicenter trial. Int J Colorectal Dis 2007; 22: 1445-1451
  • 14 Sengupta K, Alluri KV, Satish AR, Mishra S, Golakoti T, Sarma KV, Dey D, Raychaudhuri SP. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther 2008; 10: R85
  • 15 Sengupta K, Krishnaraju AV, Vishal AA, Mishra A, Trimurtulu G, Sarma KV, Raychaudhuri SK, Raychaudhuri SP. Comparative efficacy and tolerability of 5-Loxin and AflapinAgainst osteoarthritis of the knee: a double blind, randomized, placebo controlled clinical study. Int J Med Sci 2010; 7: 366-377
  • 16 Notarnicola A, Tafuri S, Fusaro L, Moretti L, Pesce V, Moretti B. The “MESACA” study: methylsulfonylmethane and boswellic acids in the treatment of gonarthrosis. Adv Ther 2011; 28: 894-906
  • 17 Sander O, Herborn G, Rau R. Is H15 (resin extract of Boswellia serrata, “incense”) a useful supplement to established drug therapy of chronic polyarthritis? Results of a double-blind pilot study. Z Rheumatol 1998; 57: 11-16
  • 18 Gupta I, Gupta V, Parihar A, Gupta S, Ludtke R, Safayhi H, Ammon HP. Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur J Med Res 1998; 3: 511-514
  • 19 Pedretti A, Capezzera R, Zane C, Facchinetti E, Calzavara-Pinton P. Effects of topical boswellic acid on photo and age-damaged skin: clinical, biophysical, and echographic evaluations in a double-blind, randomized, split-face study. Planta Med 2010; 76: 555-560
  • 20 Kirste S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K, Hug MJ, Lubrich B, Grosu AL, Momm F. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer 2011; 117: 3788-3795
  • 21 Sengupta K, Kolla JN, Krishnaraju AV, Yalamanchili N, Rao CV, Golakoti T, Raychaudhuri S, Raychaudhuri SP. Cellular and molecular mechanisms of anti-inflammatory effect of Aflapin: a novel Boswellia serrata extract. Mol Cell Biochem 2011; 354: 189-197
  • 22 Efferth T, Greten HJ. Anti-inflammatory and anti-cancer activity of boswellic acids from frankincense (Boswellia serrata Roxb. et Colebr, B. carterii Birdw.). For Immunopathol Dis Therap 2011; 2: 303-313
  • 23 Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HP, Safayhi H. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol 1996; 117: 615-618
  • 24 Henkel A, Kather N, Monch B, Northoff H, Jauch J, Werz O. Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochem Pharmacol 2012; 83: 115-121
  • 25 Husch J, Gerbeth K, Fricker G, Setzer C, Zirkel J, Rebmann H, Schubert-Zsilavecz M, Abdel-Tawab M. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present. J Nat Prod 2012; 75: 1675-1682
  • 26 Husch J, Bohnet J, Fricker G, Skarke C, Artaria C, Appendino G, Schubert-Zsilavecz M, Abdel-Tawab M. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia 2013; 84: 89-98
  • 27 Poeckel D, Werz O. Boswellic acids: biological actions and molecular targets. Curr Med Chem 2006; 13: 3359-3369
  • 28 Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HP. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 1992; 261: 1143-1146
  • 29 Safayhi H, Sailer ER, Ammon HP. Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol 1995; 47: 1212-1216
  • 30 Safayhi H, Sailer ER, Ammon HP. 5-Lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid (AKBA) by a novel mechanism. Phytomedicine 1996; 3: 71-72
  • 31 Safayhi H, Boden SE, Schweizer S, Ammon HP. Concentration-dependent potentiating and inhibitory effects of Boswellia extracts on 5-lipoxygenase product formation in stimulated PMNL. Planta Med 2000; 66: 110-113
  • 32 Siemoneit U, Pergola C, Jazzar B, Northoff H, Skarke C, Jauch J, Werz O. On the interference of boswelliinc acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur J Pharmacol 2009; 606: 246-254
  • 33 Siemoneit U, Hofmann B, Kather N, Lamkemeyer T, Madlung J, Franke L, Schneider G, Jauch J, Poeckel D, Werz O. Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem Pharmacol 2008; 75: 503-513
  • 34 Altmann A, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Boswellic acids activate p 42(MAPK) and p 38 MAPK and stimulate Ca(2+) mobilization. Biochem Biophys Res Commun 2002; 290: 185-190
  • 35 Altmann A, Poeckel D, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes. Br J Pharmacol 2004; 141: 223-232
  • 36 Safayhi H, Rall B, Sailer ER, Ammon HP. Inhibition by boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther 1997; 281: 460-463
  • 37 Poeckel D, Tausch L, Kather N, Jauch J, Werz O. Boswellic acids stimulate arachidonic acid release and 12-lipoxygenase activity in human platelets independent of Ca2+ and differentially interact with platelet-type 12-lipoxygenase. Mol Pharmacol 2006; 70: 1071-1078
  • 38 Roy S, Khanna S, Shah H, Rink C, Phillips C, Preuss H, Subbaraju GV, Trimurtulu G, Krishnaraju AV, Bagchi M, Bagchi D, Sen CK. Human genome screen to identify the genetic basis of the anti-inflammatory effects of Boswellia in microvascular endothelial cells. DNA Cell Biol 2005; 24: 244-255
  • 39 Poeckel D, Tausch L, Altmann A, Feisst C, Klinkhardt U, Graff J, Harder S, Werz O. Induction of central signalling pathways and select functional effects in human platelets by beta-boswellic acid. Br J Pharmacol 2005; 146: 514-524
  • 40 Siemoneit U, Koeberle A, Rossi A, Dehm F, Verhoff M, Reckel S, Maier TJ, Jauch J, Northoff H, Bernhard F. Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Brit J Pharmacol 2011; 162: 147-162
  • 41 Tausch L, Henkel A, Siemoneit U, Poeckel D, Kather N, Franke L, Hofmann B, Schneider G, Angioni C, Geisslinger G, Skarke C, Holtmeier W, Beckhaus T, Karas M, Jauch J, Werz O. Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J Immunol 2009; 183: 3433-3442
  • 42 Liu JJ, Nilsson A, Oredsson S, Badmaev V, Zhao WZ, Duan RD. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis 2002; 23: 2087-2093
  • 43 Liu JJ, Nilsson A, Oredsson S, Badmaev V, Duan RD. Keto-and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in Hep G2 cells via a caspase-8 dependent pathway. Int J Mol Med 2002; 10: 501-505
  • 44 Lu M, Xia L, Hua H, Jing Y. Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res 2008; 68: 1180-1186
  • 45 Liu JJ, Duan RD. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res 2009; 29: 2987-2991
  • 46 Cuaz-Pérolin C, Billiet L, Baugé E, Copin C, Scott-Algara D, Genze F, Büchele B, Syrovets T, Simmet T, Rouis M. Antiinflammatory and antiatherogenic effects of the NF-κB inhibitor acetyl-11-keto-β-boswellic acid in LPS-challenged ApoE−/− mice. Arterioscler Thromb Vasc Biol 2008; 28: 272-277
  • 47 Takada Y, Ichikawa H, Badmaev V, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol 2006; 176: 3127-3140
  • 48 Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One 2011; 6: e26943
  • 49 Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 2009; 69: 5893-5900
  • 50 Liang Y, Li P, Huang Q, Zhao J, Liu X, Dai M. Acetyl-11-keto-beta: boswellic acid regulates the activities of matrix metalloproteinases-1,-2,-9. Chin J Pathophysiol 2009; 25: 2004-2011
  • 51 Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer 2011; 129: 23-33
  • 52 Zhang YS, Xie JZ, Zhong JL, Li YY, Wang RQ, Qin YZ, Lou HX, Gao ZH, Qu XJ. Acetyl-11-keto-beta-boswellic acid (AKBA) inhibits human gastric carcinoma growth through modulation of the Wnt/beta-catenin signaling pathway. Biochim Biophys Acta 2013; 1830: 3604-3615
  • 53 Yuan Y, Cui SX, Wang Y, Ke HN, Wang RQ, Lou HX, Gao ZH, Qu XJ. Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta 2013; 1830: 4907-4916
  • 54 Syrovets T, Buchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol Pharmacol 2000; 58: 71-81
  • 55 Eichhorn T, Greten HJ, Efferth T. Molecular determinants of the response of tumor cells to boswellic acids. Pharmaceuticals 2011; 4: 1171-1182
  • 56 Shao Y, Ho CT, Chin CK, Badmaev V, Ma W, Huang MT. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med 1998; 64: 328-331
  • 57 Huang MT, Badmaev V, Ding Y, Liu Y, Xie JG, Ho CT. Anti-tumor and anti-carcinogenic activities of triterpenoid, beta-boswellic acid. Biofactors 2000; 13: 225-230
  • 58 Takahashi M, Sung B, Shen Y, Hur K, Link A, Boland CR, Aggarwal BB, Goel A. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis 2012; 33: 2441-2449
  • 59 Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, Leung HC, Boland CR, Goel A. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther 2012; 13: 542-552
  • 60 Jones R, Rubin G, Berenbaum F, Scheiman J. Gastrointestinal and cardiovascular risks of nonsteroidal anti-inflammatory drugs. Am J Med 2008; 121: 464-474
  • 61 Golbabaei S, Bazl R, Golestanian S, Nabati F, Omrany ZB, Yousefi B, Hajiaghaee R, Rezazadeh S, Amanlou M. Urease inhibitory activities of beta-boswellic acid derivatives. Daru 2013; 21: 2
  • 62 Ravanan P, Singh SK, Rao GS, Kondaiah P. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J Biosci 2011; 36: 297-307
  • 63 Qurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, Zargar MA, Andotra SS, Shah BA, Taneja SC, Saxena AK. PARP cleavage and perturbance in mitochondrial membrane potential by 3-alpha-propionyloxy-beta-boswellic acid results in cancer cell death and tumor regression in murine models. Future Oncol 2012; 8: 867-881
  • 64 Qurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, Zargar MA, Andotra SS, Shah BA, Taneja SC, Saxena AK. NF-kappa B down-regulation and PARP cleavage by novel 3-alpha-butyryloxy-beta-boswellic acid results in cancer cell specific apoptosis and in vivo tumor regression. Anticancer Agents Med Chem 2013; 13: 777-790
  • 65 Bhushan S, Kumar A, Malik F, Andotra SS, Sethi VK, Kaur IP, Taneja SC, Qazi GN, Singh J. A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells. Apoptosis 2007; 12: 1911-1926
  • 66 Suneela D, Dipmala P. Synthesis and pharmacokinetic profile of rhein- boswellic acid conjugate. Bioorg Med Chem Lett 2012; 22: 7582-7587
  • 67 Dhaneshwar S, Dipmala P, Abhay H, Prashant B. Disease-modifying effect of anthraquinone prodrug with boswellic acid on collagenase-induced osteoarthritis in Wistar rats. Inflamm Allergy Drug Targets 2013; 12: 288-295
  • 68 Shah BA, Kumar A, Gupta P, Sharma M, Sethi VK, Saxena AK, Singh J, Qazi GN, Taneja SC. Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids. Bioorg Med Chem Lett 2007; 17: 6411-6416
  • 69 Csuk R, Niesen-Barthel A, Barthel A, Kluge R, Strohl D. Synthesis of an antitumor active endoperoxide from 11-keto-beta-boswellic acid. Eur J Med Chem 2010; 45: 3840-3843
  • 70 Khan S, Chib R, Shah BA, Wani ZA, Dhar N, Mondhe DM, Lattoo S, Jain SK, Taneja SC, Singh J. A cyano analogue of boswellic acid induces crosstalk between p 53/PUMA/Bax and telomerase that stages the human papillomavirus type 18 positive HeLa cells to apoptotic death. Eur J Pharmacol 2011; 660: 241-248
  • 71 Khan S, Kaur R, Shah BA, Malik F, Kumar A, Bhushan S, Jain SK, Taneja SC, Singh J. A novel cyano derivative of 11-keto-beta-boswellic acid causes apoptotic death by disrupting PI3K/AKT/Hsp-90 cascade, mitochondrial integrity, and other cell survival signaling events in HL-60 cells. Mol Carcinog 2012; 51: 679-695
  • 72 Chashoo G, Singh SK, Mondhe DM, Sharma PR, Andotra SS, Shah BA, Taneja SC, Saxena AK. Potentiation of the antitumor effect of 11-keto-beta-boswellic acid by its 3-alpha-hexanoyloxy derivative. Eur J Pharmacol 2011; 668: 390-400
  • 73 Chashoo G, Singh SK, Sharma PR, Mondhe DM, Hamid A, Saxena A, Andotra SS, Shah BA, Qazi NA, Taneja SC, Saxena AK. A propionyloxy derivative of 11-keto-beta-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem Biol Interact 2011; 189: 60-71
  • 74 Kumar A, Shah BA, Singh S, Hamid A, Singh SK, Sethi VK, Saxena AK, Singh J, Taneja SC. Acyl derivatives of boswellic acids as inhibitors of NF-kappa B and STATs. Bioorg Med Chem Lett 2012; 22: 431-435
  • 75 Pathania AS, Joshi A, Kumar S, Guru SK, Bhushan S, Sharma PR, Bhat WW, Saxena AK, Singh J, Shah BA, Andotra SS, Taneja SC, Malik FA, Kumar A. Reversal of boswellic acid analog BA145 induced caspase dependent apoptosis by PI3K inhibitor LY294002 and MEK inhibitor PD98059. Apoptosis 2013; 18: 1561-1573
  • 76 Morad SA, Schmid M, Buchele B, Siehl HU, El GM, Lunov O, Syrovets T, Simmet T. A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Mol Pharmacol 2013; 83: 531-541
  • 77 Wang Y, Sun Y, Wang C, Huo X, Liu P, Wang C, Zhang B, Zhan L, Zhang H, Deng S, Zhao Y, Ma X. Biotransformation of 11-keto-beta-boswellic acid by Cunninghamella blakesleana. Phytochemistry 2013; 96: 330-336
  • 78 Buchele B, Zugmaier W, Estrada A, Genze F, Syrovets T, Paetz C, Schneider B, Simmet T. Characterization of 3alpha-acetyl-11-keto-alpha-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo . Planta Med 2006; 72: 1285-1289
  • 79 Sun Y, Liu D, Xi R, Wang X, Wang Y, Hou J, Zhang B, Wang C, Liu K, Ma X. Microbial transformation of acetyl-11-keto-β-boswellic acid and their inhibitory activity on LPS-induced NO production. Bioorg Med Chem Lett 2013; 23: 1338-1342
  • 80 Tawab MA, Kaunzinger A, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Development of a high-performance liquid chromatographic method for the determination of 11-keto-beta-boswellic acid in human plasma. J Chromatogr B Biomed Sci Appl 2001; 761: 221-227
  • 81 Sharma S, Thawani V, Hingorani L, Shrivastava M, Bhate VR, Khiyani R. Pharmacokinetic study of 11-Keto beta-Boswellic acid. Phytomedicine 2004; 11: 255-260
  • 82 Buchele B, Simmet T. Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photodiode array detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 795: 355-362
  • 83 Gerbeth K, Meins J, Kirste S, Momm F, Schubert-Zsilavecz M, Abdel-Tawab M. Determination of major boswellic acids in plasma by high-pressure liquid chromatography/mass spectrometry. J Pharmaceut Biomed 2011; 56: 998-1005
  • 84 Gerbeth K, Husch J, Fricker G, Werz O, Schubert-Zsilavecz M, Abdel-Tawab M. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia 2013; 84: 99-106
  • 85 Reising K, Meins J, Bastian B, Eckert G, Mueller WE, Schubert-Zsilavecz M, Abdel-Tawab M. Determination of boswellic acids in brain and plasma by high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 2005; 77: 6640-6645
  • 86 Kaunzinger A, Baumeister A, Cuda K, Häring N, Schug B, Blume HH, Raddatz K, Fischer G, Schubert-Zsilavecz M. Determination of 11-keto-boswellic acid in human plasma. J Pharmaceut Biomed 2002; 28: 729-739
  • 87 Shah SA, Rathod IS, Suhagia BN, Patel DA, Parmar VK, Shah BK, Vaishnavi VM. Estimation of boswellic acids from market formulations of Boswellia serrata extract and 11-keto beta-boswellic acid in human plasma by high-performance thin-layer chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 848: 232-238
  • 88 Krohn K, Rao MS, Raman NV, Khalilullah M. High-performance thin layer chromatographic analysis of anti-inflammatory triterpenoids from Boswellia serrata Roxb. Phytochem Anal 2001; 12: 374-376
  • 89 Weber CC, Reising K, Muller WE, Schubert-Zsilavecz M, Abdel-Tawab M. Modulation of Pgp function by boswellic acids. Planta Med 2006; 72: 507-513
  • 90 Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M, Schubert-Zsilavecz M, Abdel-Tawab M. Metabolism of boswellic acids in vitro and in vivo . Drug Metab Dispos 2008; 36: 1135-1142
  • 91 Kruger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci 2009; 36: 275-284
  • 92 Bagul P, Khomane KS, Bansal AK. Investigating permeability related hurdles in oral delivery of 11-keto-beta-boswellic acid. Int J Pharm 2014; 464: 104-110
  • 93 Sterk V, Buchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 2004; 70: 1155-1160
  • 94 Skarke C, Kuczka K, Tausch L, Werz O, Rossmanith T, Barrett JS, Harder S, Holtmeier W, Schwarz JA. Increased bioavailability of 11-keto-beta-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: modeling and simulation considerations for evaluating drug exposures. J Clin Pharmacol 2012; 52: 1592-1600
  • 95 Sharma A, Gupta NK, Dixit VK. Complexation with phosphatidyl choline as a strategy for absorption enhancement of boswellic acid. Drug Deliv 2010; 17: 587-595
  • 96 Goel A, Ahmad FJ, Singh RM, Singh GN. 3-Acetyl-11-keto-beta-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J Pharm Pharmacol 2010; 62: 273-278