Aktuelle Urol 2014; 45(06): 457-463
DOI: 10.1055/s-0034-1395529
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Ga-68-PSMA-PET/CT bei Prostatakarzinom

Ga-68-PSMA PET/CT for Prostate Cancer
D. Hellwig
1   Klinik für Nuklearmedizin, Universitätsklinikum des Saarlandes, Homburg
2   Abteilung Nuklearmedizin, Universitätsklinikum Regensburg
2   Abteilung Nuklearmedizin, Universitätsklinikum Regensburg
,
J. Moosbauer
2   Abteilung Nuklearmedizin, Universitätsklinikum Regensburg
,
C. Eilles
2   Abteilung Nuklearmedizin, Universitätsklinikum Regensburg
› Author Affiliations
Further Information

Publication History

Publication Date:
17 December 2014 (online)

Zusammenfassung

Prostata-spezifisches Membran-Antigen (PSMA) wird als Zelloberflächenprotein physiologisch in der Prostata exprimiert und kommt bei Prostatakarzinomen in allen Stadien vor. Auch bei kastrationsresistenten Prostatakarzinomen tritt diese Überexpression von PSMA auf. Wegen der Enzym­aktivität von PSMA konnte man spezifische Inhibitoren entwickeln, von denen sich „Small Molecule“-Radiopharmaka ableiten. Durch Kopplung des spezifisch bindenden Motives Glutamat-Harnstoff-Lysin mit dem Chelator HBED-CC, der sehr effektiv Ga-68 komplexiert, steht ein neues Radiopharmakon für die Ga-68-PSMA-PET/CT zur Verfügung. Diese neue Untersuchungsmethode weist nach den ersten Ergebnissen bei Patienten mit Prostatakarzinomen bezüglich der Bildqualität Vorteile gegenüber der Cholin-PET/CT auf. Eine erste Studie zeigte ein kontrastreicheres PET-Signal und höhere diagnostische Treffsicherheit. Die Eigenschaften auch weiterer neuer PSMA-PET-Radiopharmaka lassen eine zunehmende Bedeutung für die Diagnostik in allen Stadien des Prostatakarzinoms erwarten. In Verbindung mit PSMA-Therapie-Radiopharmaka eröffnet sich ein neues Feld der Theragnostik.

Abstract

Prostate-specific membrane antigen (PSMA) is expressed as a cell surface protein physiologically in the prostate and can be found in all stages of prostate cancer. Even in castration-resistant prostate cancers, this overexpression of PSMA occurs. Due to the enzymatic activity of PSMA it was possible develop specific inhibitors from which “small molecule” radiopharmaceuticals were derived. By coupling the specific binding motif glutamate-urea-lysine with the chelator HBED-CC, which complexes Ga-68 very effectively, a new radiopharmaceutical is available for Ga-68-PSMA-PET/CT. According to the first results in patients with prostate carcinoma, this new diagnostic tool exhibited advantages in image quality compared to choline-PET/CT. An initial study demonstrated the higher contrast of the PET signal and an improved diagnostic accuracy. The properties of even further new PSMA PET radiopharmaceuticals can be of increasing importance for the diagnostic work-up of prostate cancer in all stages.

In conjunction with therapeutic PSMA radiopharmaceuticals, a new field of theragnostics is opened.

 
  • Literatur

  • 1 Afshar-Oromieh A, Haberkorn U, Eder M et al. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 2012; 39: 1085-1086
  • 2 Afshar-Oromieh A, Malcher A, Eder M et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 2013; 40: 486-495
  • 3 Afshar-Oromieh A, Zechmann CM, Malcher A et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2014; 41: 11-20
  • 4 Bander NH, Milowsky MI, Nanus DM et al. Phase I trial of 177Lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. Journal of Clinical Oncology 2005; 23: 4591-4601
  • 5 Bauman G, Belhocine T, Kovacs M et al. 18 F-fluorocholine for prostate cancer imaging: A systematic review of the literature. Prostate Cancer and Prostatic Diseases 2012; 15: 45-55
  • 6 Beheshti M, Haim S, Zakavi R et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 2013; 54: 833-840
  • 7 Beheshti M, Langsteger W, Sommerhuber A et al. BAY 1075553 in staging and re-staging of prostate cancer patients – Phase I study and comparison to 18F-FCH. J Nucl Med 2012; 53 (Suppl. 01) 272
  • 8 Chang SS, O’Keefe DS, Bacich DJ et al. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clinical Cancer Research 1999; 5: 2674-2681
  • 9 Chang SS, Reuter VE, Heston WD et al. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology 2001; 57: 801-805
  • 10 Cho SY, Gage KL, Mease RC et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 2012; 53: 1883-1891
  • 11 Davis MI, Bennett MJ, Thomas LM et al. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 981-986
  • 12 De Angelis R, Sant M, Coleman MP et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE-5-a population-based study. Lancet Oncol 2014; 15: 23-34
  • 13 Eder M, Eisenhut M, Babich J et al. PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging 2013; 40: 819-823
  • 14 Eder M, Schafer M, Bauder-Wust U et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 2012; 23: 688-697
  • 15 Eder M, Wangler B, Knackmuss S et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging 2008; 35: 1878-1886
  • 16 Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 2004; 91: 528-539
  • 17 Graham K, Kettschau G, Gromov A et al. [18F]-labeled PET tracer BAY1075553, small molecule inhibitor of PSMA for molecular Imaging of prostate cancer. World. Molecular. Imaging. Conference 2011; 235
  • 18 Haffner MC, Kronberger IE, Ross JS et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Human Pathology 2009; 40: 1754-1761
  • 19 Hillier SM, Kern AM, Maresca KP et al. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 2011; 52: 1082-1093
  • 20 Hillier SM, Maresca KP, Femia FJ et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Research 2009; 69: 6932-6940
  • 21 Hofer C, Laubenbacher C, Block T et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. European Urology 1999; 36: 31-35
  • 22 Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 2011; 52: 81-89
  • 23 Kozikowski AP, Nan F, Conti P et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase) [1]. Journal of Medicinal Chemistry 2001; 44: 298-301
  • 24 Li Y, Cozzi PJ, Russell PJ. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010; 30: 67-101
  • 25 Liu H, Moy P, Kim S et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997; 57: 3629-3634
  • 26 Maresca KP, Hillier SM, Femia FJ et al. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. Journal of Medicinal Chemistry 2009; 52: 347-357
  • 27 Mease RC, Dusich CL, Foss CA et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 2008; 14: 3036-3043
  • 28 Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 2013; 13: 951-962
  • 29 Osborne JR, Akhtar NH, Vallabhajosula S et al. Prostate-specific membrane antigen-based imaging. Urol Oncol 2013; 31: 144-154
  • 30 Parker C. Active surveillance: towards a new paradigm in the management of early prostate cancer. Lancet Oncol 2004; 5: 101-106
  • 31 Perner S, Hofer MD, Kim R et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 2007; 38: 696-701
  • 32 Picchio M, Briganti A, Fanti S et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 2011; 59: 51-60
  • 33 Rajasekaran SA, Anilkumar G, Oshima E et al. A Novel Cytoplasmic Tail MXXXL Motif Mediates the Internalization of Prostate-specific Membrane Antigen. Molecular Biology of the Cell 2003; 14: 4835-4845
  • 34 Reske SN, Winter G, Baur B et al. Comment on Afshar-Oromieh et al.: PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 2013; 40: 969-970
  • 35 Robert Koch-Institut (Hrsg.) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg.). 2013 Krebs in Deutschland 2009/2010. Berlin
  • 36 Ross AE, Loeb S, Landis P et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol 2010; 28: 2810-2816
  • 37 Ross JS, Sheehan CE, Fisher HA et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 2003; 9: 6357-6362
  • 38 Silver DA, Pellicer I, Fair WR et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical Cancer Research 1997; 3: 81-85
  • 39 Smith-Jones PM, Vallabhajosula S, Navarro V et al. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: Preclinical studies in nude mice bearing LNCaP human prostate tumor. Journal of Nuclear Medicine 2003; 44: 610-617
  • 40 Stephenson AJ, Scardino PT, Kattan MW et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol 2007; 25: 2035-2041
  • 41 Tagawa ST, Milowsky MI, Morris M et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clinical Cancer Research 2013; 19: 5182-5191
  • 42 Trock BJ, Han M, Freedland SJ et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 2008; 299: 2760-2769
  • 43 Troyer JK, Beckett ML, Wright Jr GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. International Journal of Cancer 1995; 62: 552-558
  • 44 Wang W, Tavora F, Sharma R et al. PSMA expression in Schwannoma: a potential clinical mimicker of metastatic prostate carcinoma. Urol Oncol 2009; 27: 525-528
  • 45 Wirth M, Weißbach L, Ackermann R et al. Interdisziplinäre Leitlinie der Qualität S3 Zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. Aktualisierung 2011. Deutsche Gesellschaft für Urologie e. V. 2011
  • 46 Wright Jr GL, Grob BM, Haley C et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996; 48: 326-334