J Knee Surg 2015; 28(06): 506-512
DOI: 10.1055/s-0034-1394167
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Tibial Fixation Properties of a Continuous-Loop ACL Hamstring Graft Construct with Suspensory Fixation in Porcine Bone

Patrick A. Smith
1   Clinical Practice at Columbia Orthopaedic Group, L.L.P., Columbia, Missouri
2   Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
,
Thomas M. DeBerardino
3   Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
› Institutsangaben
Weitere Informationen

Publikationsverlauf

14. Juli 2014

17. August 2014

Publikationsdatum:
27. Oktober 2014 (online)

Abstract

The aim of this article is to compare tibial fixation strength of suspensory fixation for a quadrupled semitendinosus continuous loop all-inside anterior cruciate ligament (ACL) construct versus a doubled semitendinosus and gracilis graft fixated with an interference screw. Biomechanical testing was conducted using human hamstring allografts and porcine tibias. Constructs were cycled from 50 to 250 N for 500 cycles followed by a pull to failure. The average load to failure of tibial suspensory fixation of the all-inside continuous loop construct (1,012 N) was statistically different compared with the tibial interference screw group (612 N) (p < 0.001). The cyclic displacement of the continuous loop construct (2.5 mm) was not statistically different from the interference screw construct (1.9 mm). For both the groups, approximately half the overall cyclic displacement occurred with the first cycle. Tibial side suspensory fixation of a novel all-inside continuous loop hamstring graft provided suitable strength for tibial fixation for ACL reconstruction. The continuous loop construct had a significantly higher load to failure compared with the use of an interference screw, and cyclic loading was comparable. Use of hamstring soft tissue grafts is very common for ACL reconstruction. An all-inside ACL reconstruction is based on a continuous loop construct utilizing a single semitendinosus graft that is quadrupled employing suspensory fixation on both the femoral and tibial side. Suspensory fixation on the femoral side been previously reported, but this is the first report of strength of this method of suspensory fixation on the tibia.

 
  • References

  • 1 Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am 2011; 93 (11) 994-1000
  • 2 Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech 1970; 3 (1) 51-61
  • 3 Shelburne KB, Pandy MG. Determinants of cruciate-ligament loading during rehabilitation exercise. Clin Biomech (Bristol, Avon) 1998; 13 (6) 403-413
  • 4 Shelburne KB, Pandy MG. A dynamic model of the knee and lower limb for simulating rising movements. Comput Methods Biomech Biomed Engin 2002; 5 (2) 149-159
  • 5 Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech 2004; 37 (6) 797-805
  • 6 Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 1984; 66 (3) 344-352
  • 7 Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 2004; 32 (3) 635-640
  • 8 Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 2006; 22 (6) 660-668
  • 9 Höher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 1999; 7 (4) 215-219
  • 10 Rowden NJ, Sher D, Rogers GJ, Schindhelm K. Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. Am J Sports Med 1997; 25 (4) 472-478
  • 11 Petre BM, Smith SD, Jansson KS , et al. Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 2013; 41 (2) 416-422
  • 12 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 2003; 31 (2) 182-188
  • 13 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 2003; 31 (2) 174-181
  • 14 Park DK, Fogel HA, Bhatia S , et al. Tibial fixation of anterior cruciate ligament allograft tendons: comparison of 1-, 2-, and 4-stranded constructs. Am J Sports Med 2009; 37 (8) 1531-1538
  • 15 Aga C, Rasmussen MT, Smith SD , et al. Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 2013; 41 (4) 841-848
  • 16 Brand Jr JC, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN. Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 2000; 28 (5) 705-710
  • 17 Bartz RL, Mossoni K, Tyber J, Tokish J, Gall K, Siparsky PN. A biomechanical comparison of initial fixation strength of 3 different methods of anterior cruciate ligament soft tissue graft tibial fixation: resistance to monotonic and cyclic loading. Am J Sports Med 2007; 35 (6) 949-954
  • 18 Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP. Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 1998; 14 (1) 29-37
  • 19 Harvey AR, Thomas NP, Amis AA. The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 2003; 10 (1) 97-102
  • 20 Brand Jr J, Weiler A, Caborn DN, Brown Jr CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med 2000; 28 (5) 761-774
  • 21 Caborn DN, Brand Jr JC, Nyland J, Kocabey Y. A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw. Am J Sports Med 2004; 32 (4) 956-961
  • 22 Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 1987; 15 (3) 225-229
  • 23 Scheffler SU, Südkamp NP, Göckenjan A, Hoffmann RF, Weiler A. Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. Arthroscopy 2002; 18 (3) 304-315
  • 24 Lee JJ, Otarodifard K, Jun BJ, McGarry MH, Hatch III GF, Lee TQ. Is supplementary fixation necessary in anterior cruciate ligament reconstructions?. Am J Sports Med 2011; 39 (2) 360-365
  • 25 Hill PF, Russell VJ, Salmon LJ, Pinczewski LA. The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med 2005; 33 (1) 94-101
  • 26 Harvey A, Thomas NP, Amis AA. Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 2005; 87 (5) 593-603
  • 27 Smith PA, Schwartzberg RS, Lubowitz JH. No tunnel 2-socket technique: all-inside anterior cruciate ligament double-bundle retroconstruction. Arthroscopy 2008; 24 (10) 1184-1189
  • 28 Lubowitz JH. No-tunnel anterior cruciate ligament reconstruction: the transtibial all-inside technique. Arthroscopy 2006; 22 (8) e1-e11
  • 29 Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF. A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 2009; 37 (1) 160-167
  • 30 Lubowitz JH, Ahmad CS, Anderson K. All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 2011; 27 (5) 717-727
  • 31 Chang HC, Nyland J, Nawab A, Burden R, Caborn DN. Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 2005; 33 (7) 1057-1064
  • 32 Klein SA, Nyland J, Kocabey Y, Wozniak T, Nawab A, Caborn DN. Tendon graft fixation in ACL reconstruction: in vitro evaluation of bioabsorbable tenodesis screw. Acta Orthop Scand 2004; 75 (1) 84-88
  • 33 Zantop T, Ruemmler M, Welbers B, Langer M, Weimann A, Petersen W. Cyclic loading comparison between biodegradable interference screw fixation and biodegradable double cross-pin fixation of human bone-patellar tendon-bone grafts. Arthroscopy 2005; 21 (8) 934-941
  • 34 Seil R, Rupp S, Krauss PW, Benz A, Kohn DM. Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 1998; 26 (6) 815-819
  • 35 White KL, Camire LM, Parks BG, Corey WS, Hinton RY. Krackow locking stitch versus locking premanufactured loop stitch for soft-tissue fixation: a biomechanical study. Arthroscopy 2010; 26 (12) 1662-1666
  • 36 Walsh MP, Wijdicks CA, Armitage BM, Westerhaus BD, Parker JB, Laprade RF. The 1:1 versus the 2:2 tunnel-drilling technique: optimization of fixation strength and stiffness in an all-inside double-bundle anterior cruciate ligament reconstruction—a biomechanical study. Am J Sports Med 2009; 37 (8) 1539-1547
  • 37 Belisle AL, Bicos J, Geaney L , et al. Strain pattern comparison of double- and single-bundle anterior cruciate ligament reconstruction techniques with the native anterior cruciate ligament. Arthroscopy 2007; 23 (11) 1210-1217
  • 38 Bailey SB, Grover DM, Howell SM, Hull ML. Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia: a study of the structural properties of three soft tissue fixation devices. Am J Sports Med 2004; 32 (3) 755-764
  • 39 Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TL. Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 2004; 32 (3) 765-771
  • 40 Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC. Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen?. Am J Sports Med 2014; 42 (2) 343-349
  • 41 White MJ, Baer GS. Suspensory ACL fixation: a biomechanical study of fixed and adjustable length implants. Presented at: 2011. Annual AANA Meeting; April 14–16; San Francisco, CA
  • 42 DeBerardino TM, Smith PA, Cook JL. Femoral suspension devices for anterior cruciate ligament reconstruction: letter to the editor. Am J Sports Med 2014; 42 (2) NP15-NP16
  • 43 Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP. Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 2001; 29 (1) 67-71
  • 44 Burkhart SS, Denard PJ, Konicek J, Hanypsiak BT. Biomechanical validation of load-sharing rip-stop fixation for the repair of tissue-deficient rotator cuff tears. Am J Sports Med 2014; 42 (2) 457-462
  • 45 Mazzocca AD, Rincon LM, O'Connor RW , et al. Intra-articular partial-thickness rotator cuff tears: analysis of injured and repaired strain behavior. Am J Sports Med 2008; 36 (1) 110-116