Semin Liver Dis 2014; 34(04): 456-464
DOI: 10.1055/s-0034-1394144
Review Article

Cholangiocarcinoma: Molecular Pathways and Therapeutic Opportunities

Sumera I Ilyas
1   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
,
Mitesh J. Borad
2   Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
,
Tushar Patel
3   Departments of Internal Medicine, Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, Florida
,
Gregory J. Gores
1   Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations

Abstract

Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with limited treatment options and low survival rates. Currently, there are no curative medical therapies for CCA. Recent advances have enhanced our understanding of the genetic basis of this disease, and elucidated therapeutically relevant targets. Therapeutic efforts in development are directed at several key pathways due to genetic aberrations including receptor tyrosine kinase pathways, mutant IDH enzymes, the PI3K-AKT-mTOR pathway, and chromatin remodeling networks. A highly desmoplastic, hypovascular stroma is characteristic of CCAs and recent work has highlighted the importance of targeting this pathway via stromal myofibroblast depletion. Future efforts should concentrate on combination therapies with action against the cancer cell and the surrounding tumor stroma. As the mutational landscape of CCA is being illuminated, molecular profiling of patient tumors will enable identification of specific mutations and the opportunity to offer directed, personalized treatment options.



Publication History

Publication Date:
04 November 2014 (online)

© 2014. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145 (6) 1215-1229
  • 2 Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology 2014; 59 (6) 2397-2402
  • 3 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383 (9935) 2168-2179
  • 4 Farley DR, Weaver AL, Nagorney DM. “Natural history” of unresected cholangiocarcinoma: patient outcome after noncurative intervention. Mayo Clin Proc 1995; 70 (5) 425-429
  • 5 Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology 2009; 136 (4) 1134-1144
  • 6 Valle J, Wasan H, Palmer DH. , et al; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362 (14) 1273-1281
  • 7 Tyson GL, El-Serag HB. Risk factors for cholangiocarcinoma. Hepatology 2011; 54 (1) 173-184
  • 8 Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 2000; 60 (1) 184-190
  • 9 Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology 2001; 120 (1) 190-199
  • 10 Haigh WG, Lee SP. Identification of oxysterols in human bile and pigment gallstones. Gastroenterology 2001; 121 (1) 118-123
  • 11 Kuver R. Mechanisms of oxysterol-induced disease: insights from the biliary system. Clin Lipidol 2012; 7 (5) 537-548
  • 12 Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F. Oxysterols are novel activators of the Hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 2007; 282 (12) 8959-8968
  • 13 Nachtergaele S, Mydock LK, Krishnan K. , et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 2012; 8 (2) 211-220
  • 14 Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 2002; 122 (4) 985-993
  • 15 Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology 2004; 39 (3) 732-738
  • 16 Andersen JB, Thorgeirsson SS. Genetic profiling of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2012; 28 (3) 266-272
  • 17 Ong CK, Subimerb C, Pairojkul C. , et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 2012; 44 (6) 690-693
  • 18 Chan-On W, Nairismägi ML, Ong CK. , et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 2013; 45 (12) 1474-1478
  • 19 Jiao Y, Pawlik TM, Anders RA. , et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45 (12) 1470-1473
  • 20 Gao Q, Zhao YJ, Wang XY. , et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology 2014; 146 (5) 1397-1407
  • 21 Sia D, Hoshida Y, Villanueva A. , et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 2013; 144 (4) 829-840
  • 22 Andersen JB, Spee B, Blechacz BR. , et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012; 142 (4) 1021-1031 , e15
  • 23 Sia D, Tovar V, Moeini A, Llovet JM. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene 2013; 32 (41) 4861-4870
  • 24 Khan SA, Thomas HC, Toledano MB, Cox IJ, Taylor-Robinson SD. p53 Mutations in human cholangiocarcinoma: a review. Liver Int 2005; 25 (4) 704-716
  • 25 Tannapfel A, Sommerer F, Benicke M. , et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 2003; 52 (5) 706-712
  • 26 Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 2005; 128 (7) 2054-2065
  • 27 Park J, Tadlock L, Gores GJ, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology 1999; 30 (5) 1128-1133
  • 28 Taniai M, Grambihler A, Higuchi H. , et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 2004; 64 (10) 3517-3524
  • 29 Isomoto H, Kobayashi S, Werneburg NW. , et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 2005; 42 (6) 1329-1338
  • 30 Isomoto H, Mott JL, Kobayashi S. , et al. Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 2007; 132 (1) 384-396
  • 31 Genovese MC, Fleischmann R, Furst D. , et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Ann Rheum Dis 2014; 73 (9) 1607-1615
  • 32 Tanaka Y, Martin Mola E. IL-6 targeting compared to TNF targeting in rheumatoid arthritis: studies of olokizumab, sarilumab and sirukumab. Ann Rheum Dis 2014; 73 (9) 1595-1597
  • 33 Abulwerdi F, Liao C, Liu M. , et al. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 2014; 13 (3) 565-575
  • 34 Abulwerdi FA, Liao C, Mady AS. , et al. 3-Substituted-N-(4-hydroxynaphthalen-1-yl)arylsulfonamides as a novel class of selective Mcl-1 inhibitors: structure-based design, synthesis, SAR, and biological evaluation. J Med Chem 2014; 57 (10) 4111-4133
  • 35 Yu C, Bruzek LM, Meng XW. , et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005; 24 (46) 6861-6869
  • 36 Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 2010; 137 (23) 4061-4072
  • 37 Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology 2005; 128 (5) 1354-1368
  • 38 Fan B, Malato Y, Calvisi DF. , et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122 (8) 2911-2915
  • 39 Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest 2012; 122 (11) 3914-3918
  • 40 Zender S, Nickeleit I, Wuestefeld T. , et al. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 2013; 23 (6) 784-795
  • 41 Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J Hepatol 2014; 60 (4) 885-890
  • 42 Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14 (46) 7033-7058
  • 43 Kiguchi K, Carbajal S, Chan K. , et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res 2001; 61 (19) 6971-6976
  • 44 Graham RP, Barr Fritcher EG, Pestova E. , et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol 2014; 45 (8) 1630-1638
  • 45 Lubner SJ, Mahoney MR, Kolesar JL. , et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol 2010; 28 (21) 3491-3497
  • 46 Philip PA, Mahoney MR, Allmer C. , et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol 2006; 24 (19) 3069-3074
  • 47 Voss JS, Holtegaard LM, Kerr SE. , et al. Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Hum Pathol 2013; 44 (7) 1216-1222
  • 48 Borad MJ, Champion MD, Egan JB. , et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet 2014; 10 (2) e1004135
  • 49 Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7 (6) 504-516
  • 50 Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol 2011; 29 (36) 4837-4838
  • 51 Ross JS, Wang K, Gay L. , et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014; 19 (3) 235-242
  • 52 Gu TL, Deng X, Huang F. , et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE 2011; 6 (1) e15640
  • 53 Saborowski A, Saborowski M, Davare MA, Druker BJ, Klimstra DS, Lowe SW. Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target. Proc Natl Acad Sci U S A 2013; 110 (48) 19513-19518
  • 54 Davare MA, Saborowski A, Eide CA. , et al. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad Sci U S A 2013; 110 (48) 19519-19524
  • 55 Arai Y, Totoki Y, Hosoda F. , et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014; 59 (4) 1427-1434
  • 56 Wu YM, Su F, Kalyana-Sundaram S. , et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013; 3 (6) 636-647
  • 57 Guagnano V, Kauffmann A, Wöhrle S. , et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2012; 2 (12) 1118-1133
  • 58 Escudier B, Grünwald V, Ravaud A. , et al. Phase II results of Dovitinib (TKI258) in patients with metastatic renal cell cancer. Clin Cancer Res 2014; 20 (11) 3012-3022
  • 59 Grassian AR, Pagliarini R, Chiang DY. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2014; 30 (3) 295-302
  • 60 Kipp BR, Voss JS, Kerr SE. , et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 2012; 43 (10) 1552-1558
  • 61 Wang P, Dong Q, Zhang C. , et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 2013; 32 (25) 3091-3100
  • 62 Rohle D, Popovici-Muller J, Palaskas N. , et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013; 340 (6132) 626-630
  • 63 Wang F, Travins J, DeLaBarre B. , et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340 (6132) 622-626
  • 64 Xu RF, Sun JP, Zhang SR. , et al. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother 2011; 65 (1) 22-26
  • 65 Meng F, Henson R, Lang M. , et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130 (7) 2113-2129
  • 66 Sheppard K, Kinross KM, Solomon B, Pearson RB, Phillips WA. Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit Rev Oncog 2012; 17 (1) 69-95
  • 67 Liu N, Rowley BR, Bull CO. , et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol Cancer Ther 2013; 12 (11) 2319-2330
  • 68 Wallin JJ, Edgar KA, Guan J. , et al. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 2011; 10 (12) 2426-2436
  • 69 Costello BA, Borad MJ, Qi Y. , et al. Phase I trial of everolimus, gemcitabine and cisplatin in patients with solid tumors. Invest New Drugs 2014; 32 (4) 710-716
  • 70 Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 2009; 69 (14) 1911-1934
  • 71 Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2012; 9 (1) 44-54
  • 72 DeClerck YA. Desmoplasia: a response or a niche?. Cancer Discov 2012; 2 (9) 772-774
  • 73 Ling H, Roux E, Hempel D. , et al. Transforming growth factor β neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS ONE 2013; 8 (1) e54499
  • 74 Pinlaor S, Prakobwong S, Hiraku Y, Pinlaor P, Laothong U, Yongvanit P. Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term curcumin treatment. Eur J Pharmacol 2010; 638 1-3 134-141
  • 75 Mertens JC, Fingas CD, Christensen JD. , et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res 2013; 73 (2) 897-907
  • 76 Olive KP, Jacobetz MA, Davidson CJ. , et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324 (5933) 1457-1461
  • 77 Garber K. Stromal depletion goes on trial in pancreatic cancer. J Natl Cancer Inst 2010; 102 (7) 448-450
  • 78 Clapéron A, Mergey M, Aoudjehane L. , et al. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology 2013; 58 (6) 2001-2011
  • 79 Fingas CD, Bronk SF, Werneburg NW. , et al. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 2011; 54 (6) 2076-2088
  • 80 Fingas CD, Mertens JC, Razumilava N, Bronk SF, Sirica AE, Gores GJ. Targeting PDGFR-β in cholangiocarcinoma. Liver Int 2012; 32 (3) 400-409
  • 81 Wiedmann MW, Mössner J. Molecular targeted therapy of biliary tract cancer–results of the first clinical studies. Curr Drug Targets 2010; 11 (7) 834-850
  • 82 Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med 2012; 366 (26) 2517-2519