Subscribe to RSS
DOI: 10.1055/s-0034-1394144
Cholangiocarcinoma: Molecular Pathways and Therapeutic Opportunities

Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with limited treatment options and low survival rates. Currently, there are no curative medical therapies for CCA. Recent advances have enhanced our understanding of the genetic basis of this disease, and elucidated therapeutically relevant targets. Therapeutic efforts in development are directed at several key pathways due to genetic aberrations including receptor tyrosine kinase pathways, mutant IDH enzymes, the PI3K-AKT-mTOR pathway, and chromatin remodeling networks. A highly desmoplastic, hypovascular stroma is characteristic of CCAs and recent work has highlighted the importance of targeting this pathway via stromal myofibroblast depletion. Future efforts should concentrate on combination therapies with action against the cancer cell and the surrounding tumor stroma. As the mutational landscape of CCA is being illuminated, molecular profiling of patient tumors will enable identification of specific mutations and the opportunity to offer directed, personalized treatment options.
Publication History
Publication Date:
04 November 2014 (online)
© 2014. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Rizvi S,
Gores GJ.
Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013;
145 (6) 1215-1229
MissingFormLabel
- 2
Sirica AE,
Gores GJ.
Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic
targeting. Hepatology 2014; 59 (6) 2397-2402
MissingFormLabel
- 3
Razumilava N,
Gores GJ.
Cholangiocarcinoma. Lancet 2014; 383 (9935) 2168-2179
MissingFormLabel
- 4
Farley DR,
Weaver AL,
Nagorney DM.
“Natural history” of unresected cholangiocarcinoma: patient outcome after noncurative
intervention. Mayo Clin Proc 1995; 70 (5) 425-429
MissingFormLabel
- 5
Everhart JE,
Ruhl CE.
Burden of digestive diseases in the United States Part III: liver, biliary tract,
and pancreas. Gastroenterology 2009; 136 (4) 1134-1144
MissingFormLabel
- 6
Valle J,
Wasan H,
Palmer DH.
, et al; ABC-02 Trial Investigators.
Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med
2010; 362 (14) 1273-1281
MissingFormLabel
- 7
Tyson GL,
El-Serag HB.
Risk factors for cholangiocarcinoma. Hepatology 2011; 54 (1) 173-184
MissingFormLabel
- 8
Jaiswal M,
LaRusso NF,
Burgart LJ,
Gores GJ.
Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma
cells by a nitric oxide-dependent mechanism. Cancer Res 2000; 60 (1) 184-190
MissingFormLabel
- 9
Jaiswal M,
LaRusso NF,
Shapiro RA,
Billiar TR,
Gores GJ.
Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in
cholangiocytes. Gastroenterology 2001; 120 (1) 190-199
MissingFormLabel
- 10
Haigh WG,
Lee SP.
Identification of oxysterols in human bile and pigment gallstones. Gastroenterology
2001; 121 (1) 118-123
MissingFormLabel
- 11
Kuver R.
Mechanisms of oxysterol-induced disease: insights from the biliary system. Clin Lipidol
2012; 7 (5) 537-548
MissingFormLabel
- 12
Dwyer JR,
Sever N,
Carlson M,
Nelson SF,
Beachy PA,
Parhami F.
Oxysterols are novel activators of the Hedgehog signaling pathway in pluripotent mesenchymal
cells. J Biol Chem 2007; 282 (12) 8959-8968
MissingFormLabel
- 13
Nachtergaele S,
Mydock LK,
Krishnan K.
, et al.
Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol
2012; 8 (2) 211-220
MissingFormLabel
- 14
Yoon JH,
Higuchi H,
Werneburg NW,
Kaufmann SH,
Gores GJ.
Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor
in a human cholangiocarcinoma cell line. Gastroenterology 2002; 122 (4) 985-993
MissingFormLabel
- 15
Yoon JH,
Canbay AE,
Werneburg NW,
Lee SP,
Gores GJ.
Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for
biliary tract carcinogenesis. Hepatology 2004; 39 (3) 732-738
MissingFormLabel
- 16
Andersen JB,
Thorgeirsson SS.
Genetic profiling of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2012;
28 (3) 266-272
MissingFormLabel
- 17
Ong CK,
Subimerb C,
Pairojkul C.
, et al.
Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 2012; 44
(6) 690-693
MissingFormLabel
- 18
Chan-On W,
Nairismägi ML,
Ong CK.
, et al.
Exome sequencing identifies distinct mutational patterns in liver fluke-related and
non-infection-related bile duct cancers. Nat Genet 2013; 45 (12) 1474-1478
MissingFormLabel
- 19
Jiao Y,
Pawlik TM,
Anders RA.
, et al.
Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1
in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45 (12) 1470-1473
MissingFormLabel
- 20
Gao Q,
Zhao YJ,
Wang XY.
, et al.
Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration
and are associated with tumor recurrence in patients. Gastroenterology 2014; 146 (5)
1397-1407
MissingFormLabel
- 21
Sia D,
Hoshida Y,
Villanueva A.
, et al.
Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes
that have different outcomes. Gastroenterology 2013; 144 (4) 829-840
MissingFormLabel
- 22
Andersen JB,
Spee B,
Blechacz BR.
, et al.
Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic
targets for tyrosine kinase inhibitors. Gastroenterology 2012; 142 (4) 1021-1031 ,
e15
MissingFormLabel
- 23
Sia D,
Tovar V,
Moeini A,
Llovet JM.
Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies.
Oncogene 2013; 32 (41) 4861-4870
MissingFormLabel
- 24
Khan SA,
Thomas HC,
Toledano MB,
Cox IJ,
Taylor-Robinson SD.
p53 Mutations in human cholangiocarcinoma: a review. Liver Int 2005; 25 (4) 704-716
MissingFormLabel
- 25
Tannapfel A,
Sommerer F,
Benicke M.
, et al.
Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma.
Gut 2003; 52 (5) 706-712
MissingFormLabel
- 26
Kobayashi S,
Werneburg NW,
Bronk SF,
Kaufmann SH,
Gores GJ.
Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling
pathway in cholangiocarcinoma cells. Gastroenterology 2005; 128 (7) 2054-2065
MissingFormLabel
- 27
Park J,
Tadlock L,
Gores GJ,
Patel T.
Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates
growth of a cholangiocarcinoma cell line. Hepatology 1999; 30 (5) 1128-1133
MissingFormLabel
- 28
Taniai M,
Grambihler A,
Higuchi H.
, et al.
Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance
in human cholangiocarcinoma cells. Cancer Res 2004; 64 (10) 3517-3524
MissingFormLabel
- 29
Isomoto H,
Kobayashi S,
Werneburg NW.
, et al.
Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway
in cholangiocarcinoma cells. Hepatology 2005; 42 (6) 1329-1338
MissingFormLabel
- 30
Isomoto H,
Mott JL,
Kobayashi S.
, et al.
Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic
silencing. Gastroenterology 2007; 132 (1) 384-396
MissingFormLabel
- 31
Genovese MC,
Fleischmann R,
Furst D.
, et al.
Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate
response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Ann Rheum
Dis 2014; 73 (9) 1607-1615
MissingFormLabel
- 32
Tanaka Y,
Martin Mola E.
IL-6 targeting compared to TNF targeting in rheumatoid arthritis: studies of olokizumab,
sarilumab and sirukumab. Ann Rheum Dis 2014; 73 (9) 1595-1597
MissingFormLabel
- 33
Abulwerdi F,
Liao C,
Liu M.
, et al.
A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro
and in vivo. Mol Cancer Ther 2014; 13 (3) 565-575
MissingFormLabel
- 34
Abulwerdi FA,
Liao C,
Mady AS.
, et al.
3-Substituted-N-(4-hydroxynaphthalen-1-yl)arylsulfonamides as a novel class of selective
Mcl-1 inhibitors: structure-based design, synthesis, SAR, and biological evaluation.
J Med Chem 2014; 57 (10) 4111-4133
MissingFormLabel
- 35
Yu C,
Bruzek LM,
Meng XW.
, et al.
The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor
BAY 43-9006. Oncogene 2005; 24 (46) 6861-6869
MissingFormLabel
- 36
Hofmann JJ,
Zovein AC,
Koh H,
Radtke F,
Weinmaster G,
Iruela-Arispe ML.
Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development:
insights into Alagille syndrome. Development 2010; 137 (23) 4061-4072
MissingFormLabel
- 37
Ishimura N,
Bronk SF,
Gores GJ.
Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications
for carcinogenesis. Gastroenterology 2005; 128 (5) 1354-1368
MissingFormLabel
- 38
Fan B,
Malato Y,
Calvisi DF.
, et al.
Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122
(8) 2911-2915
MissingFormLabel
- 39
Sekiya S,
Suzuki A.
Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes.
J Clin Invest 2012; 122 (11) 3914-3918
MissingFormLabel
- 40
Zender S,
Nickeleit I,
Wuestefeld T.
, et al.
A critical role for notch signaling in the formation of cholangiocellular carcinomas.
Cancer Cell 2013; 23 (6) 784-795
MissingFormLabel
- 41
Morell CM,
Strazzabosco M.
Notch signaling and new therapeutic options in liver disease. J Hepatol 2014; 60 (4)
885-890
MissingFormLabel
- 42
Sirica AE.
Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma.
World J Gastroenterol 2008; 14 (46) 7033-7058
MissingFormLabel
- 43
Kiguchi K,
Carbajal S,
Chan K.
, et al.
Constitutive expression of ErbB-2 in gallbladder epithelium results in development
of adenocarcinoma. Cancer Res 2001; 61 (19) 6971-6976
MissingFormLabel
- 44
Graham RP,
Barr Fritcher EG,
Pestova E.
, et al.
Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.
Hum Pathol 2014; 45 (8) 1630-1638
MissingFormLabel
- 45
Lubner SJ,
Mahoney MR,
Kolesar JL.
, et al.
Report of a multicenter phase II trial testing a combination of biweekly bevacizumab
and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium
study. J Clin Oncol 2010; 28 (21) 3491-3497
MissingFormLabel
- 46
Philip PA,
Mahoney MR,
Allmer C.
, et al.
Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol
2006; 24 (19) 3069-3074
MissingFormLabel
- 47
Voss JS,
Holtegaard LM,
Kerr SE.
, et al.
Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment
decisions. Hum Pathol 2013; 44 (7) 1216-1222
MissingFormLabel
- 48
Borad MJ,
Champion MD,
Egan JB.
, et al.
Integrated genomic characterization reveals novel, therapeutically relevant drug targets
in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet
2014; 10 (2) e1004135
MissingFormLabel
- 49
Comoglio PM,
Giordano S,
Trusolino L.
Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat
Rev Drug Discov 2008; 7 (6) 504-516
MissingFormLabel
- 50
Appleman LJ.
MET signaling pathway: a rational target for cancer therapy. J Clin Oncol 2011; 29
(36) 4837-4838
MissingFormLabel
- 51
Ross JS,
Wang K,
Gay L.
, et al.
New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation
sequencing. Oncologist 2014; 19 (3) 235-242
MissingFormLabel
- 52
Gu TL,
Deng X,
Huang F.
, et al.
Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.
PLoS ONE 2011; 6 (1) e15640
MissingFormLabel
- 53
Saborowski A,
Saborowski M,
Davare MA,
Druker BJ,
Klimstra DS,
Lowe SW.
Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion
oncogene and therapeutic target. Proc Natl Acad Sci U S A 2013; 110 (48) 19513-19518
MissingFormLabel
- 54
Davare MA,
Saborowski A,
Eide CA.
, et al.
Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad
Sci U S A 2013; 110 (48) 19519-19524
MissingFormLabel
- 55
Arai Y,
Totoki Y,
Hosoda F.
, et al.
Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular
subtype of cholangiocarcinoma. Hepatology 2014; 59 (4) 1427-1434
MissingFormLabel
- 56
Wu YM,
Su F,
Kalyana-Sundaram S.
, et al.
Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013;
3 (6) 636-647
MissingFormLabel
- 57
Guagnano V,
Kauffmann A,
Wöhrle S.
, et al.
FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR
inhibitor. Cancer Discov 2012; 2 (12) 1118-1133
MissingFormLabel
- 58
Escudier B,
Grünwald V,
Ravaud A.
, et al.
Phase II results of Dovitinib (TKI258) in patients with metastatic renal cell cancer.
Clin Cancer Res 2014; 20 (11) 3012-3022
MissingFormLabel
- 59
Grassian AR,
Pagliarini R,
Chiang DY.
Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma.
Curr Opin Gastroenterol 2014; 30 (3) 295-302
MissingFormLabel
- 60
Kipp BR,
Voss JS,
Kerr SE.
, et al.
Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 2012;
43 (10) 1552-1558
MissingFormLabel
- 61
Wang P,
Dong Q,
Zhang C.
, et al.
Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas
and share hypermethylation targets with glioblastomas. Oncogene 2013; 32 (25) 3091-3100
MissingFormLabel
- 62
Rohle D,
Popovici-Muller J,
Palaskas N.
, et al.
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells.
Science 2013; 340 (6132) 626-630
MissingFormLabel
- 63
Wang F,
Travins J,
DeLaBarre B.
, et al.
Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.
Science 2013; 340 (6132) 622-626
MissingFormLabel
- 64
Xu RF,
Sun JP,
Zhang SR.
, et al.
KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma
patients. Biomed Pharmacother 2011; 65 (1) 22-26
MissingFormLabel
- 65
Meng F,
Henson R,
Lang M.
, et al.
Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma
cell lines. Gastroenterology 2006; 130 (7) 2113-2129
MissingFormLabel
- 66
Sheppard K,
Kinross KM,
Solomon B,
Pearson RB,
Phillips WA.
Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit Rev Oncog 2012; 17 (1) 69-95
MissingFormLabel
- 67
Liu N,
Rowley BR,
Bull CO.
, et al.
BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and
p110δ activities in tumor cell lines and xenograft models. Mol Cancer Ther 2013; 12
(11) 2319-2330
MissingFormLabel
- 68
Wallin JJ,
Edgar KA,
Guan J.
, et al.
GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer
models driven by the PI3K pathway. Mol Cancer Ther 2011; 10 (12) 2426-2436
MissingFormLabel
- 69
Costello BA,
Borad MJ,
Qi Y.
, et al.
Phase I trial of everolimus, gemcitabine and cisplatin in patients with solid tumors.
Invest New Drugs 2014; 32 (4) 710-716
MissingFormLabel
- 70
Ma X,
Ezzeldin HH,
Diasio RB.
Histone deacetylase inhibitors: current status and overview of recent clinical trials.
Drugs 2009; 69 (14) 1911-1934
MissingFormLabel
- 71
Sirica AE.
The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat
Rev Gastroenterol Hepatol 2012; 9 (1) 44-54
MissingFormLabel
- 72
DeClerck YA.
Desmoplasia: a response or a niche?. Cancer Discov 2012; 2 (9) 772-774
MissingFormLabel
- 73
Ling H,
Roux E,
Hempel D.
, et al.
Transforming growth factor β neutralization ameliorates pre-existing hepatic fibrosis
and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS ONE 2013; 8 (1)
e54499
MissingFormLabel
- 74
Pinlaor S,
Prakobwong S,
Hiraku Y,
Pinlaor P,
Laothong U,
Yongvanit P.
Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term
curcumin treatment. Eur J Pharmacol 2010; 638 1-3 134-141
MissingFormLabel
- 75
Mertens JC,
Fingas CD,
Christensen JD.
, et al.
Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma.
Cancer Res 2013; 73 (2) 897-907
MissingFormLabel
- 76
Olive KP,
Jacobetz MA,
Davidson CJ.
, et al.
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model
of pancreatic cancer. Science 2009; 324 (5933) 1457-1461
MissingFormLabel
- 77
Garber K.
Stromal depletion goes on trial in pancreatic cancer. J Natl Cancer Inst 2010; 102
(7) 448-450
MissingFormLabel
- 78
Clapéron A,
Mergey M,
Aoudjehane L.
, et al.
Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through
activation of epidermal growth factor receptor. Hepatology 2013; 58 (6) 2001-2011
MissingFormLabel
- 79
Fingas CD,
Bronk SF,
Werneburg NW.
, et al.
Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma
cells. Hepatology 2011; 54 (6) 2076-2088
MissingFormLabel
- 80
Fingas CD,
Mertens JC,
Razumilava N,
Bronk SF,
Sirica AE,
Gores GJ.
Targeting PDGFR-β in cholangiocarcinoma. Liver Int 2012; 32 (3) 400-409
MissingFormLabel
- 81
Wiedmann MW,
Mössner J.
Molecular targeted therapy of biliary tract cancer–results of the first clinical studies.
Curr Drug Targets 2010; 11 (7) 834-850
MissingFormLabel
- 82
Ribas A.
Tumor immunotherapy directed at PD-1. N Engl J Med 2012; 366 (26) 2517-2519
MissingFormLabel