Semin Liver Dis 2014; 34(04): 398-414
DOI: 10.1055/s-0034-1394140
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging Techniques for the Diagnosis of Hepatocellular Carcinoma and the Evaluation of Response to Treatment

Hero K. Hussain
1   Department of Radiology/MRI, University of Michigan Health System, Ann Arbor, Michigan
,
Daniel C. Barr
1   Department of Radiology/MRI, University of Michigan Health System, Ann Arbor, Michigan
,
Christoph Wald
2   Department of Radiology, Lahey Clinic Medical Center, Tufts University Medical School, Burlington, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
04 November 2014 (online)

Abstract

Imaging plays a critical role in the diagnosis of hepatocellular carcinoma (HCC). In the USA, non-invasive imaging based diagnosis of HCC has largely replaced biopsy because of the high specificity and positive predictive value of imaging features for HCC. Because of the important role of imaging and the need to promote standardization of the management of HCC, several imaging-based algorithms for the diagnosis of HCC in at-risk patients have been developed.

Imaging also plays a vital role in the assessment of HCC response to locoregional therapies (LRT) such as ablative and endovascular therapies. Standard imaging response criteria of solid tumors that rely solely on change in tumor size for determination of therapeutic success are not applicable to HCC undergoing LRT. Therefore, several systems have been developed over the years to objectively evaluate HCC response to LRT.

In this review, we will describe major and ancillary imaging features of HCC, how these features are incorporated into the various imaging based algorithms, discuss the differences between algorithms, and address the emerging role of new imaging techniques and contrast agents in the diagnosis of HCC. We will also discuss the importance of assessment of HCC response to LRT, describe patterns of imaging response to the various therapies including newer volumetric and functional response measures, and examine and compare proposed response criteria of HCC to LRT.

 
  • References

  • 1 Wald C, Russo MW, Heimbach JK, Hussain HK, Pomfret EA, Bruix J. New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 2013; 266 (2) 376-382
  • 2 Bruix J, Reig M, Rimola J , et al. Clinical decision making and research in hepatocellular carcinoma: pivotal role of imaging techniques. Hepatology 2011; 54 (6) 2238-2244
  • 3 Forner A, Vilana R, Ayuso C , et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 2008; 47 (1) 97-104
  • 4 Sangiovanni A, Manini MA, Iavarone M , et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 2010; 59 (5) 638-644
  • 5 Bruix J, Sherman M ; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53 (3) 1020-1022
  • 6 Khalili K, Kim TK, Jang HJ, Yazdi LK, Guindi M, Sherman M. Indeterminate 1-2-cm nodules found on hepatocellular carcinoma surveillance: biopsy for all, some, or none?. Hepatology 2011; 54 (6) 2048-2054
  • 7 Cruite I, Tang A, Sirlin CB. Imaging-based diagnostic systems for hepatocellular carcinoma. AJR Am J Roentgenol 2013; 201 (1) 41-55
  • 8 Song P, Tobe RG, Inagaki Y , et al. The management of hepatocellular carcinoma around the world: a comparison of guidelines from 2001 to 2011. Liver Int 2012; 32 (7) 1053-1063
  • 9 HRSA/OPTN. Policy 3.6 Organ Distribution: Allocation of Livers. U.S. Department of Health & Human Services; 2013 . Available at: http://optn.transplant.hrsa.gov/PoliciesandBylaws2/policies/pdfs/policy_8.pdf . Accessed September 13, 2014
  • 10 American College of Radiology . Liver Imaging Reporting and Data System v2013.1. 2013 . Available at: http://www.acr.org/Quality-Safety/Resources/LIRADS . Accessed September 14, 2014
  • 11 Hayashi M, Matsui O, Ueda K , et al. Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol 1999; 172 (4) 969-976
  • 12 Hayashi M, Matsui O, Ueda K, Kawamori Y, Gabata T, Kadoya M. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology 2002; 225 (1) 143-149
  • 13 Lauenstein TC, Salman K, Morreira R , et al. Gadolinium-enhanced MRI for tumor surveillance before liver transplantation: center-based experience. AJR Am J Roentgenol 2007; 189 (3) 663-670
  • 14 Kim TK, Lee KH, Jang HJ , et al. Analysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1-2-cm) hepatic nodules in patients at high risk for hepatocellular carcinoma. Radiology 2011; 259 (3) 730-738
  • 15 Rimola J, Forner A, Tremosini S , et al. Non-invasive diagnosis of hepatocellular carcinoma ≤ 2 cm in cirrhosis. Diagnostic accuracy assessing fat, capsule and signal intensity at dynamic MRI. J Hepatol 2012; 56 (6) 1317-1323
  • 16 Quaia E, De Paoli L, Pizzolato R , et al. Predictors of dysplastic nodule diagnosis in patients with liver cirrhosis on unenhanced and gadobenate dimeglumine-enhanced MRI with dynamic and hepatobiliary phase. AJR Am J Roentgenol 2013; 200 (3) 553-562
  • 17 Kelekis NL, Semelka RC, Worawattanakul S , et al. Hepatocellular carcinoma in North America: a multiinstitutional study of appearance on T1-weighted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. AJR Am J Roentgenol 1998; 170 (4) 1005-1013
  • 18 Hecht EM, Holland AE, Israel GM , et al. Hepatocellular carcinoma in the cirrhotic liver: gadolinium-enhanced 3D T1-weighted MR imaging as a stand-alone sequence for diagnosis. Radiology 2006; 239 (2) 438-447
  • 19 Rhee H, Kim MJ, Park MS, Kim KA. Differentiation of early hepatocellular carcinoma from benign hepatocellular nodules on gadoxetic acid-enhanced MRI. Br J Radiol 2012; 85 (1018) e837-e844
  • 20 Sano K, Ichikawa T, Motosugi U , et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 2011; 261 (3) 834-844
  • 21 Hosoki T, Chatani M, Mori S. Dynamic computed tomography of hepatocellular carcinoma. AJR Am J Roentgenol 1982; 139 (6) 1099-1106
  • 22 Ippolito D, Sironi S, Pozzi M , et al. Hepatocellular carcinoma in cirrhotic liver disease: functional computed tomography with perfusion imaging in the assessment of tumor vascularization. Acad Radiol 2008; 15 (7) 919-927
  • 23 Liu YI, Shin LK, Jeffrey RB, Kamaya A. Quantitatively defining washout in hepatocellular carcinoma. AJR Am J Roentgenol 2013; 200 (1) 84-89
  • 24 Carlos RC, Kim HM, Hussain HK, Francis IR, Nghiem HV, Fendrick AM. Developing a prediction rule to assess hepatic malignancy in patients with cirrhosis. AJR Am J Roentgenol 2003; 180 (4) 893-900
  • 25 Ito K, Fujita T, Shimizu A , et al. Multiarterial phase dynamic MRI of small early enhancing hepatic lesions in cirrhosis or chronic hepatitis: differentiating between hypervascular hepatocellular carcinomas and pseudolesions. AJR Am J Roentgenol 2004; 183 (3) 699-705
  • 26 Khan AS, Hussain HK, Johnson TD, Weadock WJ, Pelletier SJ, Marrero JA. Value of delayed hypointensity and delayed enhancing rim in magnetic resonance imaging diagnosis of small hepatocellular carcinoma in the cirrhotic liver. J Magn Reson Imaging 2010; 32 (2) 360-366
  • 27 Marrero JA, Hussain HK, Nghiem HV, Umar R, Fontana RJ, Lok AS. Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl 2005; 11 (3) 281-289
  • 28 Cereser L, Furlan A, Bagatto D , et al. Comparison of portal venous and delayed phases of gadolinium-enhanced magnetic resonance imaging study of cirrhotic liver for the detection of contrast washout of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr 2010; 34 (5) 706-711
  • 29 Furlan A, Marin D, Vanzulli A , et al. Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout. Br J Radiol 2011; 84 (1001) 403-412
  • 30 Bartolozzi C, Battaglia V, Bargellini I , et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging 2013; 38 (2) 290-296
  • 31 Becker-Weidman DJ, Kalb B, Sharma P , et al. Hepatocellular carcinoma lesion characterization: single-institution clinical performance review of multiphase gadolinium-enhanced MR imaging—comparison to prior same-center results after MR systems improvements. Radiology 2011; 261 (3) 824-833
  • 32 Khalili K, Kim TK, Jang HJ , et al. Optimization of imaging diagnosis of 1-2 cm hepatocellular carcinoma: an analysis of diagnostic performance and resource utilization. J Hepatol 2011; 54 (4) 723-728
  • 33 Ishigami K, Yoshimitsu K, Nishihara Y , et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology 2009; 250 (2) 435-443
  • 34 Hussain HK, Syed I, Nghiem HV , et al. T2-weighted MR imaging in the assessment of cirrhotic liver. Radiology 2004; 230 (3) 637-644
  • 35 Ebara M, Fukuda H, Kojima Y , et al. Small hepatocellular carcinoma: relationship of signal intensity to histopathologic findings and metal content of the tumor and surrounding hepatic parenchyma. Radiology 1999; 210 (1) 81-88
  • 36 Kadoya M, Matsui O, Takashima T, Nonomura A. Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 1992; 183 (3) 819-825
  • 37 Yamashita Y, Fan ZM, Yamamoto H , et al. Spin-echo and dynamic gadolinium-enhanced FLASH MR imaging of hepatocellular carcinoma: correlation with histopathologic findings. J Magn Reson Imaging 1994; 4 (1) 83-90
  • 38 Valls C, Iannacconne R, Alba E , et al. Fat in the liver: diagnosis and characterization. Eur Radiol 2006; 16 (10) 2292-2308
  • 39 Martín J, Sentís M, Zidan A , et al. Fatty metamorphosis of hepatocellular carcinoma: detection with chemical shift gradient-echo MR imaging. Radiology 1995; 195 (1) 125-130
  • 40 Kutami R, Nakashima Y, Nakashima O, Shiota K, Kojiro M. Pathomorphologic study on the mechanism of fatty change in small hepatocellular carcinoma of humans. J Hepatol 2000; 33 (2) 282-289
  • 41 Yu JS, Chung JJ, Kim JH, Kim KW. Fat-containing nodules in the cirrhotic liver: chemical shift MRI features and clinical implications. AJR Am J Roentgenol 2007; 188 (4) 1009-1016
  • 42 Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254 (1) 47-66
  • 43 Le Moigne F, Durieux M, Bancel B , et al. Impact of diffusion-weighted MR imaging on the characterization of small hepatocellular carcinoma in the cirrhotic liver. Magn Reson Imaging 2012; 30 (5) 656-665
  • 44 Hardie AD, Kizziah MK, Boulter DJ. Diagnostic accuracy of diffusion-weighted MRI for identifying hepatocellular carcinoma with liver explant correlation. J Med Imaging Radiat Oncol 2011; 55 (4) 362-367
  • 45 Muhi A, Ichikawa T, Motosugi U , et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging 2009; 30 (5) 1005-1011
  • 46 Nasu K, Kuroki Y, Tsukamoto T, Nakajima H, Mori K, Minami M. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol 2009; 193 (2) 438-444
  • 47 Park MS, Kim S, Patel J , et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology 2012; 56 (1) 140-148
  • 48 Piana G, Trinquart L, Meskine N, Barrau V, Beers BV, Vilgrain V. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol 2011; 55 (1) 126-132
  • 49 Sandrasegaran K, Tahir B, Patel A , et al. The usefulness of diffusion-weighted imaging in the characterization of liver lesions in patients with cirrhosis. Clin Radiol 2013; 68 (7) 708-715
  • 50 Vandecaveye V, De Keyzer F, Verslype C , et al. Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 2009; 19 (10) 2456-2466
  • 51 Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 2010; 34 (4) 506-512
  • 52 Wu LM, Xu JR, Lu Q, Hua J, Chen J, Hu J. A pooled analysis of diffusion-weighted imaging in the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Gastroenterol Hepatol 2013; 28 (2) 227-234
  • 53 Park MJ, Kim YK, Lee MH, Lee JH. Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusion-weighted MR imaging for small hepatocellular carcinoma (<= 2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta Radiol 2013; 54 (2) 127-136
  • 54 Park MJ, Kim YK, Lee MW , et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 2012; 264 (3) 761-770
  • 55 Saito K, Moriyasu F, Sugimoto K , et al. Histological grade of differentiation of hepatocellular carcinoma: comparison of the efficacy of diffusion-weighted MRI with T2-weighted imaging and angiography-assisted CT. J Med Imaging Radiat Oncol 2012; 56 (3) 261-269
  • 56 Chen L, Zhang L, Bao J , et al. Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 2013; 62 (10) 1520-1521
  • 57 Liu X, Zou L, Liu F, Zhou Y, Song B. Gadoxetic acid disodium-enhanced magnetic resonance imaging for the detection of hepatocellular carcinoma: a meta-analysis. PLoS ONE 2013; 8 (8) e70896
  • 58 Reimer P, Schneider G, Schima W. Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 2004; 14 (4) 559-578
  • 59 Van Beers BE, Pastor CM, Hussain HK. Primovist, Eovist: what to expect?. J Hepatol 2012; 57 (2) 421-429
  • 60 Bartolozzi C, Crocetti L, Lencioni R, Cioni D, Della Pina C, Campani D. Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol 2007; 17 (10) 2519-2530
  • 61 Vogl TJ, Kümmel S, Hammerstingl R , et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 1996; 200 (1) 59-67
  • 62 Granito A, Galassi M, Piscaglia F , et al. Impact of gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance on the non-invasive diagnosis of small hepatocellular carcinoma: a prospective study. Aliment Pharmacol Ther 2013; 37 (3) 355-363
  • 63 Kogita S, Imai Y, Okada M , et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol 2010; 20 (10) 2405-2413
  • 64 Ahn SS, Kim MJ, Lim JS, Hong HS, Chung YE, Choi JY. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 2010; 255 (2) 459-466
  • 65 Akai H, Kiryu S, Matsuda I , et al. Detection of hepatocellular carcinoma by Gd-EOB-DTPA-enhanced liver MRI: comparison with triple phase 64 detector row helical CT. Eur J Radiol 2011; 80 (2) 310-315
  • 66 Baek CK, Choi JY, Kim KA , et al. Hepatocellular carcinoma in patients with chronic liver disease: a comparison of gadoxetic acid-enhanced MRI and multiphasic MDCT. Clin Radiol 2012; 67 (2) 148-156
  • 67 Kim SH, Kim SH, Lee J , et al. Gadoxetic acid-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR Am J Roentgenol 2009; 192 (6) 1675-1681
  • 68 Onishi H, Kim T, Imai Y , et al. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Eur Radiol 2012; 22 (4) 845-854
  • 69 Sun HY, Lee JM, Shin CI , et al. Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or =2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Invest Radiol 2010; 45 (2) 96-103
  • 70 Wu LM, Xu JR, Gu HY , et al. Is liver-specific gadoxetic acid-enhanced magnetic resonance imaging a reliable tool for detection of hepatocellular carcinoma in patients with chronic liver disease?. Dig Dis Sci 2013; 58 (11) 3313-3325
  • 71 Chernyak V, Kim J, Rozenblit AM, Mazzoriol F, Ricci Z. Hepatic enhancement during the hepatobiliary phase after gadoxetate disodium administration in patients with chronic liver disease: the role of laboratory factors. J Magn Reson Imaging 2011; 34 (2) 301-309
  • 72 Kim HY, Choi JY, Park CH , et al. Clinical factors predictive of insufficient liver enhancement on the hepatocyte-phase of Gd-EOB-DTPA-enhanced magnetic resonance imaging in patients with liver cirrhosis. J Gastroenterol 2013; 48 (10) 1180-1187
  • 73 Kim JY, Lee SS, Byun JH , et al. Biologic factors affecting HCC conspicuity in hepatobiliary phase imaging with liver-specific contrast agents. AJR Am J Roentgenol 2013; 201 (2) 322-331
  • 74 Tamada T, Ito K, Higaki A , et al. Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 2011; 80 (3) e311-e316
  • 75 Choi JW, Lee JM, Kim SJ , et al. Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR images and their value as an imaging biomarker. Radiology 2013; 267 (3) 776-786
  • 76 Kitao A, Zen Y, Matsui O , et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR imaging—correlation with molecular transporters and histopathologic features. Radiology 2010; 256 (3) 817-826
  • 77 Tsuboyama T, Onishi H, Kim T , et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 2010; 255 (3) 824-833
  • 78 Choi JY, Kim MJ, Park YN , et al. Gadoxetate disodium-enhanced hepatobiliary phase MRI of hepatocellular carcinoma: correlation with histological characteristics. AJR Am J Roentgenol 2011; 197 (2) 399-405
  • 79 European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56 (4) 908-943
  • 80 Kudo M, Izumi N, Kokudo N , et al; HCC Expert Panel of Japan Society of Hepatology. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis 2011; 29 (3) 339-364
  • 81 Omata M, Lesmana LA, Tateishi R , et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 2010; 4 (2) 439-474
  • 82 Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, consensus of the LI-RADS Management Working Group and future directions. Hepatology 2014; [Epub ahead of print]
  • 83 Petruzzi N, Mitchell D, Guglielmo F , et al. Hepatocellular carcinoma likelihood on MRI exams: evaluation of a standardized categorization system. Acad Radiol 2013; 20 (6) 694-698
  • 84 Choi JY, Cho HC, Sun M, Kim HC, Sirlin CB. Indeterminate observations (liver imaging reporting and data system category 3) on MRI in the cirrhotic liver: fate and clinical implications. AJR Am J Roentgenol 2013; 201 (5) 993-1001
  • 85 Fowler KJ, Karimova EJ, Arauz AR , et al. Validation of organ procurement and transplant network (OPTN)/united network for organ sharing (UNOS) criteria for imaging diagnosis of hepatocellular carcinoma. Transplantation 2013; 95 (12) 1506-1511
  • 86 Khalili K, Kim TY, Jang HJ, Haider MA, Guindi M, Sherman M. Implementation of AASLD hepatocellular carcinoma practice guideline in North America: two years of experience. Hepatology 2008; 48: 362A
  • 87 Leoni S, Piscaglia F, Golfieri R , et al. The impact of vascular and nonvascular findings on the noninvasive diagnosis of small hepatocellular carcinoma based on the EASL and AASLD criteria. Am J Gastroenterol 2010; 105 (3) 599-609
  • 88 Davenport MS, Khalatbari S, Liu PS , et al. Repeatability of diagnostic features and scoring systems for hepatocellular carcinoma by using MR imaging. Radiology 2014; 272 (1) 132-142
  • 89 Baron RL. The radiologist as interpreter and translator. Radiology 2014; 272 (1) 4-8
  • 90 Sersté T, Barrau V, Ozenne V , et al. Accuracy and disagreement of computed tomography and magnetic resonance imaging for the diagnosis of small hepatocellular carcinoma and dysplastic nodules: role of biopsy. Hepatology 2012; 55 (3) 800-806
  • 91 Yu NC, Chaudhari V, Raman SS , et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol 2011; 9 (2) 161-167
  • 92 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379 (9822) 1245-1255
  • 93 Bruix J, Sherman M, Llovet JM , et al; EASL Panel of Experts on HCC; European Association for the Study of the Liver. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J Hepatol 2001; 35 (3) 421-430
  • 94 Llovet JM, Di Bisceglie AM, Bruix J , et al; Panel of Experts in HCC-Design Clinical Trials. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008; 100 (10) 698-711
  • 95 Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010; 30 (1) 52-60
  • 96 Kudo M, Kubo S, Takayasu K , et al; Liver Cancer Study Group of Japan (Committee for Response Evaluation Criteria in Cancer of the Liver, Liver Cancer Study Group of Japan ) Response Evaluation Criteria in Cancer of the Liver (RECICL) proposed by the Liver Cancer Study Group of Japan (2009 Revised Version). Hepatol Res 2010; 40 (7) 686-692
  • 97 Choi H, Charnsangavej C, Faria SC , et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 2007; 25 (13) 1753-1759
  • 98 Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981; 47 (1) 207-214
  • 99 Therasse P, Arbuck SG, Eisenhauer EA , et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92 (3) 205-216
  • 100 Eisenhauer EA, Therasse P, Bogaerts J , et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45 (2) 228-247
  • 101 Bruix J, Sherman M ; Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42 (5) 1208-1236
  • 102 Benjamin RS, Choi H, Macapinlac HA , et al. We should desist using RECIST, at least in GIST. J Clin Oncol 2007; 25 (13) 1760-1764
  • 103 Ronot M, Bouattour M, Wassermann J , et al. Alternative response criteria (Choi, European Association for the Study of the Liver, and modified Response Evaluation Criteria in Solid Tumors [RECIST]) Versus RECIST 1.1 in patients with advanced hepatocellular carcinoma treated with sorafenib. Oncologist 2014; 19 (4) 394-402
  • 104 Gonzalez-Guindalini FD, Botelho MP, Harmath CB , et al. Assessment of liver tumor response to therapy: role of quantitative imaging. Radiographics 2013; 33 (6) 1781-1800
  • 105 Chalian H, Tochetto SM, Töre HG, Rezai P, Yaghmai V. Hepatic tumors: region-of-interest versus volumetric analysis for quantification of attenuation at CT. Radiology 2012; 262 (3) 853-861
  • 106 Forner A, Ayuso C, Varela M , et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable?. Cancer 2009; 115 (3) 616-623
  • 107 Li H, Guo Z, Si T, Wang H. EASL and mRECIST responses are independent predictors of survival in hepatocellular carcinoma patients treated with cryoablation. Eur J Gastroenterol Hepatol 2013; 25 (5) 620-627
  • 108 Yeo DM, Choi JI, Lee YJ, Park MY, Chun HJ, Lee HG. Comparison of RECIST, mRECIST, and Choi criteria for early response evaluation of hepatocellular carcinoma after transarterial chemoembolization using drug-eluting beads. J Comput Assist Tomogr 2014; 38 (3) 391-397
  • 109 Bargellini I, Vignali C, Cioni R , et al. Hepatocellular carcinoma: CT for tumor response after transarterial chemoembolization in patients exceeding Milan criteria—selection parameter for liver transplantation. Radiology 2010; 255 (1) 289-300
  • 110 Gillmore R, Stuart S, Kirkwood A , et al. EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol 2011; 55 (6) 1309-1316
  • 111 Jung ES, Kim JH, Yoon EL , et al. Comparison of the methods for tumor response assessment in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. J Hepatol 2013; 58 (6) 1181-1187
  • 112 Kim BK, Kim KA, Park JY , et al. Prospective comparison of prognostic values of modified response evaluation criteria in solid tumours with European Association for the Study of the Liver criteria in hepatocellular carcinoma following chemoembolisation. Eur J Cancer 2013; 49 (4) 826-834
  • 113 Kim CJ, Kim HJ, Park JH , et al. Radiologic response to transcatheter hepatic arterial chemoembolization and clinical outcomes in patients with hepatocellular carcinoma. Liver Int 2014; 34 (2) 305-312
  • 114 Memon K, Kulik L, Lewandowski RJ , et al. Radiographic response to locoregional therapy in hepatocellular carcinoma predicts patient survival times. Gastroenterology 2011; 141 (2) 526-535 , e1–e2
  • 115 Prajapati HJ, Spivey JR, Hanish SI , et al. mRECIST and EASL responses at early time point by contrast-enhanced dynamic MRI predict survival in patients with unresectable hepatocellular carcinoma (HCC) treated by doxorubicin drug-eluting beads transarterial chemoembolization (DEB TACE). Ann Oncol 2013; 24 (4) 965-973
  • 116 Riaz A, Miller FH, Kulik LM , et al. Imaging response in the primary index lesion and clinical outcomes following transarterial locoregional therapy for hepatocellular carcinoma. JAMA 2010; 303 (11) 1062-1069
  • 117 Sato Y, Watanabe H, Sone M , et al; Japan Interventional Radiology in Oncology Study Group-JIVROSG. Tumor response evaluation criteria for HCC (hepatocellular carcinoma) treated using TACE (transcatheter arterial chemoembolization): RECIST (response evaluation criteria in solid tumors) version 1.1 and mRECIST (modified RECIST): JIVROSG-0602. Ups J Med Sci 2013; 118 (1) 16-22
  • 118 Shim JH, Lee HC, Kim SO , et al. Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 2012; 262 (2) 708-718
  • 119 Salem R, Miller FH, Yaghmai V, Lewandowski RJ. Response assessment methodologies in hepatocellular carcinoma: complexities in the era of local and systemic treatments. J Hepatol 2013; 58 (6) 1260-1262
  • 120 Kim BK, Kim SU, Kim MJ , et al. Number of target lesions for EASL and modified RECIST to predict survivals in hepatocellular carcinoma treated with chemoembolization. Clin Cancer Res 2013; 19 (6) 1503-1511
  • 121 Shim JH, Lee HC, Won HJ , et al. Maximum number of target lesions required to measure responses to transarterial chemoembolization using the enhancement criteria in patients with intrahepatic hepatocellular carcinoma. J Hepatol 2012; 56 (2) 406-411
  • 122 Riaz A, Memon K, Miller FH , et al. Role of the EASL, RECIST, and WHO response guidelines alone or in combination for hepatocellular carcinoma: radiologic-pathologic correlation. J Hepatol 2011; 54 (4) 695-704
  • 123 Yaghmai V, Besa C, Kim E, Gatlin JL, Siddiqui NA, Taouli B. Imaging assessment of hepatocellular carcinoma response to locoregional and systemic therapy. AJR Am J Roentgenol 2013; 201 (1) 80-96
  • 124 Lewandowski RJ, Mulcahy MF, Kulik LM , et al. Chemoembolization for hepatocellular carcinoma: comprehensive imaging and survival analysis in a 172-patient cohort. Radiology 2010; 255 (3) 955-965
  • 125 Abou-Alfa GK, Schwartz L, Ricci S , et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24 (26) 4293-4300
  • 126 Dhanasekaran R, Khanna V, Kooby DA , et al. The effectiveness of locoregional therapies versus supportive care in maintaining survival within the Milan criteria in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2010; 21 (8) 1197-1204 , quiz 204
  • 127 Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 2003; 37 (2) 429-442
  • 128 Llovet JM, Real MI, Montaña X , et al; Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359 (9319) 1734-1739
  • 129 Llovet JM, Ricci S, Mazzaferro V , et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (4) 378-390
  • 130 Lo CM, Ngan H, Tso WK , et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35 (5) 1164-1171
  • 131 Millonig G, Graziadei IW, Freund MC , et al. Response to preoperative chemoembolization correlates with outcome after liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 2007; 13 (2) 272-279
  • 132 Park WH, Shim JH, Han SB , et al. Clinical utility of des-gamma-carboxyprothrombin kinetics as a complement to radiologic response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. . J Vasc Interv Radiol 2012; 23 (7) 927-936
  • 133 Cantu M, Piardi T, Sommacale D , et al. Pathologic response to non-surgical locoregional therapies as potential selection criteria for liver transplantation for hepatocellular carcinoma. Ann Transplant 2013; 18: 273-284
  • 134 Lao OB, Weissman J, Perkins JD. Pre-transplant therapy for hepatocellular carcinoma is associated with a lower recurrence after liver transplantation. Clin Transplant 2009; 23 (6) 874-881
  • 135 Shuster A, Huynh TJ, Rajan DK , et al. Response Evaluation Criteria in Solid Tumors (RECIST) criteria are superior to European Association for Study of the Liver (EASL) criteria at 1 month follow-up for predicting long-term survival in patients treated with transarterial chemoembolization before liver transplantation for hepatocellular cancer. J Vasc Interv Radiol 2013; 24 (6) 805-812
  • 136 Georgiades C, Geschwind JF, Harrison N , et al. Lack of response after initial chemoembolization for hepatocellular carcinoma: does it predict failure of subsequent treatment?. Radiology 2012; 265 (1) 115-123
  • 137 Henry JC, Malhotra L, Khabiri H , et al. Best radiological response to trans-arterial chemoembolization for hepatocellular carcinoma does not imply better outcomes. HPB (Oxford) 2013; 15 (3) 196-202
  • 138 Kalva SP, Pectasides M, Yeddula K, Ganguli S, Blaszkowsky LS, Zhu AX. Factors affecting survival following chemoembolization with doxorubicin-eluting microspheres for inoperable hepatocellular carcinoma. J Vasc Interv Radiol 2013; 24 (2) 257-265
  • 139 Sala M, Llovet JM, Vilana R , et al; Barcelona Clínic Liver Cancer Group. Initial response to percutaneous ablation predicts survival in patients with hepatocellular carcinoma. Hepatology 2004; 40 (6) 1352-1360
  • 140 Reig M, Rimola J, Torres F , et al. Postprogression survival of patients with advanced hepatocellular carcinoma: rationale for second-line trial design. Hepatology 2013; 58 (6) 2023-2031
  • 141 Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology 2004; 127 (5) (Suppl. 01) S179-S188
  • 142 Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (> 2 and < 5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol 2010; 195 (3) 758-765
  • 143 Goldberg SN, Grassi CJ, Cardella JF , et al; Society of Interventional Radiology Technology Assessment Committee and the International Working Group on Image-guided Tumor Ablation. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 2009; 20 (7, Suppl) S377-S390
  • 144 Liu L, Wang W, Chen H , et al. EASL- and mRECIST-evaluated responses to combination therapy of sorafenib with transarterial chemoembolization predict survival in patients with hepatocellular carcinoma. Clin Cancer Res 2014; 20 (6) 1623-1631
  • 145 Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 2000; 88 (11) 2452-2463
  • 146 Dromain C, de Baere T, Elias D , et al. Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 2002; 223 (1) 255-262
  • 147 Lim HK, Choi D, Lee WJ , et al. Hepatocellular carcinoma treated with percutaneous radio-frequency ablation: evaluation with follow-up multiphase helical CT. Radiology 2001; 221 (2) 447-454
  • 148 Winters SD, Jackson S, Armstrong GA, Birchall IW, Lee KH, Low G. Value of subtraction MRI in assessing treatment response following image-guided loco-regional therapies for hepatocellular carcinoma. Clin Radiol 2012; 67 (7) 649-655
  • 149 Kim YS, Rhim H, Lim HK. Imaging after radiofrequency ablation of hepatic tumors. Semin Ultrasound CT MR 2009; 30 (2) 49-66
  • 150 Chopra S, Dodd III GD, Chintapalli KN, Leyendecker JR, Karahan OI, Rhim H. Tumor recurrence after radiofrequency thermal ablation of hepatic tumors: spectrum of findings on dual-phase contrast-enhanced CT. AJR Am J Roentgenol 2001; 177 (2) 381-387
  • 151 Gervais DA, Kalva S, Thabet A. Percutaneous image-guided therapy of intra-abdominal malignancy: imaging evaluation of treatment response. Abdom Imaging 2009; 34 (5) 593-609
  • 152 Pupulim LF, Hakimé A, Barrau V, Abdel-Rehim M, Zappa M, Vilgrain V. Fatty hepatocellular carcinoma: radiofrequency ablation—imaging findings. Radiology 2009; 250 (3) 940-948
  • 153 Kamel IR, Bluemke DA, Eng J , et al. The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 2006; 17 (3) 505-512
  • 154 Golfieri R, Cappelli A, Cucchetti A , et al. Efficacy of selective transarterial chemoembolization in inducing tumor necrosis in small (<5 cm) hepatocellular carcinomas. Hepatology 2011; 53 (5) 1580-1589
  • 155 Ibrahim SM, Nikolaidis P, Miller FH , et al. Radiologic findings following Y90 radioembolization for primary liver malignancies. Abdom Imaging 2009; 34 (5) 566-581
  • 156 Kimura T, Aikata H, Takahashi S , et al. Stereotactic body radiotherapy for patients with small hepatocellular carcinoma ineligible for resection or ablation therapies. Hepatol Res 2014; [Epub ahead of print]
  • 157 Price TR, Perkins SM, Sandrasegaran K , et al. Evaluation of response after stereotactic body radiotherapy for hepatocellular carcinoma. Cancer 2012; 118 (12) 3191-3198
  • 158 Sanuki N, Takeda A, Mizuno T , et al. Tumor response on CT following hypofractionated stereotactic ablative body radiotherapy for small hypervascular hepatocellular carcinoma with cirrhosis. AJR Am J Roentgenol 2013; 201 (6) W812-20
  • 159 Gates VL, Atassi B, Lewandowski RJ , et al. Radioembolization with Yttrium-90 microspheres: review of an emerging treatment for liver tumors. Future Oncol 2007; 3 (1) 73-81
  • 160 Park MJ, Kim SY, Yoon SM , et al. Stereotactic body radiotherapy-induced arterial hypervascularity of non-tumorous hepatic parenchyma in patients with hepatocellular carcinoma: potential pitfalls in tumor response evaluation on multiphase computed tomography. PLoS ONE 2014; 9 (2) e90327
  • 161 Kim EY, Choi D, Lim H, Lee WJ, Yoo BC, Paik SW. Change in contrast enhancement of HCC on 1-month follow-up CT after local radiotherapy: an early predictor of final treatment response. Eur J Radiol 2009; 72 (3) 440-446
  • 162 Duke E, Deng J, Ibrahim SM , et al. Agreement between competing imaging measures of response of hepatocellular carcinoma to yttrium-90 radioembolization. J Vasc Interv Radiol 2010; 21 (4) 515-521
  • 163 Keppke AL, Salem R, Reddy D , et al. Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. AJR Am J Roentgenol 2007; 188 (3) 768-775
  • 164 Rhee TK, Naik NK, Deng J , et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol 2008; 19 (8) 1180-1186
  • 165 Salem R, Lewandowski RJ, Mulcahy MF , et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138 (1) 52-64
  • 166 Horger M, Lauer UM, Schraml C , et al. Early MRI response monitoring of patients with advanced hepatocellular carcinoma under treatment with the multikinase inhibitor sorafenib. BMC Cancer 2009; 9: 208
  • 167 Kim MJ, Choi JI, Lee JS, Park JW. Computed tomography findings of sorafenib-treated hepatic tumors in patients with advanced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 (7) 1201-1206
  • 168 Salvaggio G, Furlan A, Agnello F , et al. Hepatocellular carcinoma enhancement on contrast-enhanced CT and MR imaging: response assessment after treatment with sorafenib: preliminary results. Radiol Med (Torino) 2014; 119 (4) 215-221
  • 169 Edeline J, Boucher E, Rolland Y , et al. Comparison of tumor response by Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma. Cancer 2012; 118 (1) 147-156
  • 170 Bargellini I, Scionti A, Mismas V , et al. Identification of responders to sorafenib in hepatocellular carcinoma: is tumor volume measurement the way forward?. Oncology 2014; 86 (4) 191-198
  • 171 Chen CY, Li CW, Kuo YT , et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants—initial experience. Radiology 2006; 239 (2) 448-456
  • 172 Deng J, Miller FH, Rhee TK , et al. Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 2006; 17 (7) 1195-1200
  • 173 Goshima S, Kanematsu M, Kondo H , et al. Evaluating local hepatocellular carcinoma recurrence post-transcatheter arterial chemoembolization: is diffusion-weighted MRI reliable as an indicator?. J Magn Reson Imaging 2008; 27 (4) 834-839
  • 174 Kamel IR, Bluemke DA, Ramsey D , et al. Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2003; 181 (3) 708-710
  • 175 Kamel IR, Liapi E, Reyes DK, Zahurak M, Bluemke DA, Geschwind JF. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 2009; 250 (2) 466-473
  • 176 Kamel IR, Reyes DK, Liapi E, Bluemke DA, Geschwind JF. Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 2007; 18 (1 Pt 1) 49-56
  • 177 Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol 2009; 193 (4) 1044-1052
  • 178 Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: Prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol 2013; 82 (4) 577-582
  • 179 Yuan Z, Ye XD, Dong S , et al. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma. Eur J Radiol 2010; 75 (1) e9-e14
  • 180 Kim KW, Lee JM, Choi BI. Assessment of the treatment response of HCC. Abdom Imaging 2011; 36 (3) 300-314
  • 181 Kim SY, Lee SS, Byun JH , et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 2010; 255 (3) 815-823
  • 182 Kim SY, Lee SS, Park B , et al. Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: effect of DWI techniques and calculation methods. J Magn Reson Imaging 2012; 36 (5) 1131-1138
  • 183 Schraml C, Schwenzer NF, Clasen S , et al. Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging 2009; 29 (6) 1308-1316
  • 184 Galizia MS, Töre HG, Chalian H, Yaghmai V. Evaluation of hepatocellular carcinoma size using two-dimensional and volumetric analysis: effect on liver transplantation eligibility. Acad Radiol 2011; 18 (12) 1555-1560
  • 185 Yaghmai V, Miller FH, Rezai P, Benson III AB, Salem R. Response to treatment series: part 2, tumor response assessment—using new and conventional criteria. AJR Am J Roentgenol 2011; 197 (1) 18-27
  • 186 Abdullah SS, Pialat JB, Wiart M , et al. Characterization of hepatocellular carcinoma and colorectal liver metastasis by means of perfusion MRI. J Magn Reson Imaging 2008; 28 (2) 390-395
  • 187 Ippolito D, Sironi S, Pozzi M , et al. Perfusion CT in cirrhotic patients with early stage hepatocellular carcinoma: assessment of tumor-related vascularization. Eur J Radiol 2010; 73 (1) 148-152
  • 188 Ippolito D, Sironi S, Pozzi M , et al. Perfusion computed tomographic assessment of early hepatocellular carcinoma in cirrhotic liver disease: initial observations. J Comput Assist Tomogr 2008; 32 (6) 855-858
  • 189 Jarnagin WR, Schwartz LH, Gultekin DH , et al. Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 2009; 20 (9) 1589-1595
  • 190 Jiang T, Kambadakone A, Kulkarni NM, Zhu AX, Sahani DV. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Invest Radiol 2012; 47 (1) 11-17
  • 191 Miyazaki K, Collins DJ, Walker-Samuel S , et al. Quantitative mapping of hepatic perfusion index using MR imaging: a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol 2008; 18 (7) 1414-1421
  • 192 Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 2007; 243 (3) 736-743
  • 193 Taouli B, Johnson RS, Hajdu CH , et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol 2013; 201 (4) 795-800
  • 194 Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 2010; 16 (13) 1598-1609
  • 195 Wang J, Chen LT, Tsang YM, Liu TW, Shih TT. Dynamic contrast-enhanced MRI analysis of perfusion changes in advanced hepatocellular carcinoma treated with an antiangiogenic agent: a preliminary study. AJR Am J Roentgenol 2004; 183 (3) 713-719
  • 196 Wang D, Gaba RC, Jin B , et al. Intraprocedural transcatheter intra-arterial perfusion MRI as a predictor of tumor response to chemoembolization for hepatocellular carcinoma. Acad Radiol 2011; 18 (7) 828-836
  • 197 Bonekamp S, Bonekamp D, Geschwind JF , et al. Response stratification and survival analysis of hepatocellular carcinoma patients treated with intra-arterial therapy using MR imaging-based arterial enhancement fraction. J Magn Reson Imaging 2013; [Epub ahead of print]
  • 198 Yu MH, Kim JH, Yoon JH , et al. Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 2013; 201 (3) 675-683
  • 199 Bargellini I, Bozzi E, Campani D , et al. Modified RECIST to assess tumor response after transarterial chemoembolization of hepatocellular carcinoma: CT-pathologic correlation in 178 liver explants. Eur J Radiol 2013; 82 (5) e212-e218
  • 200 Kwan SW, Fidelman N, Ma E, Kerlan Jr RK, Yao FY. Imaging predictors of the response to transarterial chemoembolization in patients with hepatocellular carcinoma: a radiological-pathological correlation. Liver Transpl 2012; 18 (6) 727-736
  • 201 Odisio BC, Galastri F, Avritscher R , et al. Hepatocellular carcinomas within the Milan criteria: predictors of histologic necrosis after drug-eluting beads transarterial chemoembolization. Cardiovasc Intervent Radiol 2014; 37 (4) 1018-1026
  • 202 Riaz A, Kulik L, Lewandowski RJ , et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 2009; 49 (4) 1185-1193
  • 203 Riaz A, Lewandowski RJ, Kulik L , et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with chemoembolization. Cardiovasc Intervent Radiol 2010; 33 (6) 1143-1152
  • 204 El-Gazzaz G, Sourianarayanane A, Menon KV , et al. Radiologic-histological correlation of hepatocellular carcinoma treated via pre-liver transplant locoregional therapies. Hepatobiliary Pancreat Dis Int 2013; 12 (1) 34-41
  • 205 Vouche M, Kulik L, Atassi R , et al. Radiological-pathological analysis of WHO, RECIST, EASL, mRECIST and DWI: Imaging analysis from a prospective randomized trial of Y90 ± sorafenib. Hepatology 2013; 58 (5) 1655-1666
  • 206 Shim JH, Han S, Shin YM , et al. Optimal measurement modality and method for evaluation of responses to transarterial chemoembolization of hepatocellular carcinoma based on enhancement criteria. J Vasc Interv Radiol 2013; 24 (3) 316-325
  • 207 Kloeckner R, Otto G, Biesterfeld S, Oberholzer K, Dueber C, Pitton MB. MDCT versus MRI assessment of tumor response after transarterial chemoembolization for the treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol 2010; 33 (3) 532-540
  • 208 Jin YJ, Chung YH, Kim JA , et al. Predisposing factors of hepatocellular carcinoma recurrence following complete remission in response to transarterial chemoembolization. Dig Dis Sci 2013; 58 (6) 1758-1765