Facial Plast Surg 2014; 30(05): 545-553
DOI: 10.1055/s-0034-1393700
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Intraoperative Imaging in Orbital and Midface Reconstruction

Frank Wilde
1   Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Ulm, Germany
,
Alexander Schramm
1   Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Ulm, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. November 2014 (online)

Abstract

The orbit is very often affected by injuries which can leave patients not only with esthetic deficits, but also with functional impairments if reconstruction is inadequate. Computer-assisted surgery helps to achieve predictable outcomes in reconstruction. Today, intraoperative three-dimensional (3D) imaging is an important element in the workflow of computer-assisted orbital surgery. Clinical and radiological diagnosis by means of computed tomography is followed by preoperative computer-assisted planning to define and simulate the desired outcome of reconstruction. In difficult cases, intraoperative navigation helps in the implementation of procedure plans at the site of surgery. Intraoperative 3D imaging then allows an intraoperative final control to be made and the outcome of the surgery to be validated. Today, this is preferably done using 3D C-arm devices based on cone beam computed tomography. They help to avoid malpositioning of bone fragments and/or inserted implants assuring the quality of complex operations and reducing the number of secondary interventions necessary.

 
  • References

  • 1 Schramm A, Gellrich NC. Intraoperative Navigation und computerassistierte Chirurgie. In: Schwenzer N, und Ehrenfeld M. , eds. Zahn-Mund-Kieferheilkunde, Mund-Kiefer-Gesichtschirurgie. Stuttgart New York: Thieme; 2010: 479-499
  • 2 Hanken H, Christian L, Assaf AT, Heiland M. Intraoperative Bildgebung in der Mund-, Kiefer- und Gesichtschirurgie. Op J 2013; 29: 130-135
  • 3 Schramm A, Gellrich NC, Schmelzeisen R. Navigational Surgery of the Facial Skeleton. Berlin Heidelberg New York: Springer; 2007
  • 4 Wilde F, Lorenz K, Ebner AK, Krauss O, Mascha F, Schramm A. Intraoperative imaging with a 3D C-arm system after zygomatico-orbital complex fracture reduction. J Oral Maxillofac Surg 2013; 71 (5) 894-910
  • 5 Friedrich RE, Heiland M, Bartel-Friedrich S. Potentials of ultrasound in the diagnosis of midfacial fractures*. Clin Oral Investig 2003; 7 (4) 226-229
  • 6 Stieve M, Issing PR, Mack KF, Lenarz T, Prenzler N. Indications of intraoperative ultrasound in head and neck surgery [in German]. Laryngorhinootologie 2012; 91 (7) 422-426
  • 7 Gebhard F, Riepl C, Richter P , et al. The hybrid operating room. Home of high-end intraoperative imaging [in German]. Unfallchirurg 2012; 115 (2) 107-120
  • 8 Rock C, Linsenmaier U, Brandl R , et al. Introduction of a new mobile C-arm/CT combination equipment (ISO-C-3D). Initial results of 3-D sectional imaging [in German]. Unfallchirurg 2001; 104 (9) 827-833
  • 9 Heiland M, Schulze D, Blake F, Schmelzle R. Intraoperative imaging of zygomaticomaxillary complex fractures using a 3D C-arm system. Int J Oral Maxillofac Surg 2005; 34 (4) 369-375
  • 10 Klatt J, Heiland M, Blessmann M, Blake F, Schmelzle R, Pohlenz P. Clinical indication for intraoperative 3D imaging during open reduction of fractures of the neck and head of the mandibular condyle. J Craniomaxillofac Surg 2011; 39 (4) 244-248
  • 11 Badjate SJ, Cariappa KM. C-Arm for accurate reduction of zygomatic arch fracture—a case report. Br Dent J 2005; 199 (5) 275-277
  • 12 Heiland M, Schmelzle R, Hebecker A, Schulze D. Intraoperative 3D imaging of the facial skeleton using the SIREMOBIL Iso-C3D. Dentomaxillofac Radiol 2004; 33 (2) 130-132
  • 13 Pohlenz P, Blake F, Blessmann M , et al. Intraoperative cone-beam computed tomography in oral and maxillofacial surgery using a C-arm prototype: first clinical experiences after treatment of zygomaticomaxillary complex fractures. J Oral Maxillofac Surg 2009; 67 (3) 515-521
  • 14 Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106 (1) 106-114
  • 15 Loubele M, Bogaerts R, Van Dijck E , et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 2009; 71 (3) 461-468
  • 16 Chau AC, Fung K. Comparison of radiation dose for implant imaging using conventional spiral tomography, computed tomography, and cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107 (4) 559-565
  • 17 Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol 2004; 33 (2) 83-86
  • 18 Bonatti J, Vassiliades T, Nifong W , et al. How to build a cath-lab operating room. Heart Surg Forum 2007; 10 (4) E344-E348
  • 19 Burnstine MA. Clinical recommendations for repair of orbital facial fractures. Curr Opin Ophthalmol 2003; 14 (5) 236-240
  • 20 Metzger MC, Schön R, Weyer N , et al. Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology 2006; 113 (10) 1863-1868
  • 21 Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108 (5) 661-666