Subscribe to RSS
DOI: 10.1055/s-0034-1392775
Simultaneous Topical Antifungal Skin and Nail Therapy: A Prospective Treatment Option?
Simultane topische Fuß- und Nagelpilztherapie: Eine zukünftige Behandlungsoption?Publication History
Publication Date:
06 August 2015 (online)

Abstract
Superficial fungal infections affect 20 – 25 % of the world’s population with an increasing trend. Common infections are fungal skin and nail diseases (tinea pedis and onychomycosis, respectively), which often occur simultaneously due to autoinoculation. Tinea pedis is mostly provoked by the dermatophyte fungus Trichophyton rubrum, which remains in the outermost skin layer, the stratum corneum (SC). Normally, the treatment is done topically and takes up to four weeks. Just as tinea pedis, about 90 % of onychomycoses is triggered by T. rubrum and Trichophyton mentagrophytes. Toenail onychomycosis is 4 – 10 times more common in comparison to fingernails. The nail plate is 0.25 – 1.0 mm thick and consists of densely packed keratin cell layers. With a water content of up to 25 % and a lipid content of 0.1 – 1 %, the nail plate is considered as a hydrophilic gel membrane with an additional lipophilic route. Due to its excellent barrier properties and a growth rate of only 2 – 3 mm per month, nail mycosis treatment is a remarkable challenge and is often accompanied by high relapse rates. In contrast to the nail plate, SC is considered as an approximately 10 µm thick, predominantly lipophilic barrier. Because of the distinct structure of these tissues, hitherto, there are only formulations marketed for either tinea pedis or onychomycosis. A formulation targeting both would therefore be a considerable improvement, but has to fulfil different characteristics.
The following review focuses on potential active pharmaceutical ingredients (API) for simultaneous tinea pedis and onychomycosis treatment as well as in vitro models for antifungal efficacy evaluation. It carves out the challenges in simultaneous therapy based on the distinct structure of nail and SC.
Zusammenfassung
Oberflächliche Pilzinfektionen betreffen 20 – 25 % der Weltbevölkerung mit steigender Tendenz. Häufige Infektionen sind Haut- und Nagelpilzerkrankungen (Tinea pedis bzw. Onychomykose), die wegen Autoinokulation oft gleichzeitig auftreten. Tinea pedis wird meist durch den Dermatophyten Trichophyton rubrum ausgelöst, der in der obersten Hautschicht verbleibt, dem Stratum corneum (SC). Üblich ist eine bis zu vier Wochen dauernde topische Behandlung. Genauso wie Tinea pedis werden etwa 90 % der Onychomykosen durch T. rubrum und Trichophyton mentagrophytes ausgelöst. Onychomykose der Zehennägel ist dabei 4 – 10-mal häufiger als die der Fingernägel. Die Nagelplatte ist 0,25 – 1,0 mm dick und besteht aus dicht gepackten Keratin-Zellschichten. Mit einem Wassergehalt von bis zu 25 % und einem Lipidgehalt von 0,1 bis 1 % wird sie als hydrophile Gelmembran mit einer zusätzlichen lipophilen Route angesehen. Wegen ihrer hervorragenden Barriereeigenschaften und einer Wachstumsrate von nur 2 – 3 mm pro Monat stellt die Behandlung von Nagelpilz eine besondere Herausforderung dar und wird oft von Rückfällen begleitet. Im Unterschied zur Nagelplatte wird das SC als etwa 10 µm dicke, überwiegend lipophile Barriere betrachtet. Wegen der unterschiedlichen Struktur der Gewebe werden bisher Formulierungen entweder gegen Tinea pedis oder Onychomykose vermarktet. Eine Formulierung, die beides bekämpft, wäre daher eine beträchtliche Verbesserung. Allerdings muss diese verschiedene Eigenschaften erfüllen.
Der obige Beitrag konzentriert sich auf potenzielle pharmazeutische Wirkstoffe für die simultane Tinea pedis- und Onychomykose-Behandlung sowie In-vitro-Modelle für die Bewertung der antimykotischen Wirksamkeit. Es werden die Herausforderungen einer Simultantherapie auf der Grundlage der unterschiedlichen Strukturen des Nagels und des SC herausgearbeitet.
-
References
- 1 Szepietowski JC, Reich A, Garlowska E et al. Factors Influencing Coexistence of Toenail Onychomycosis With Tinea Pedis and Other Dermatomycoses: A survey of 2761 Patients. Arch Dermatol 2006; 142: 1279-1284
- 2 Murdan S. Enhancing the nail permeability of topically applied drugs. Expert Opin Drug Deliv 2008; 5: 1267-1282
- 3 Branscomb R. The Dermatophytoses. Laboratory Medicine 2005; 36: 496-500
- 4 Lecha M, Effendy I, Feuilhade de Chauvin M et al. Treatment options - development of consensus guidelines. J Eur Acad Dermatol Venerol 2005; 19: 25-33
- 5 Kobayashi Y, Miyamoto M, Sugibayashi K et al. Drug permeation through the three layers of the human nail plate. J Pharm Pharmacol 1999; 51: 271-278
- 6 Mertin D, Lippold B. In-vitro Permeability of the Human Nail and of a Keratin Membrane from Bovine Hooves: Influence of the Partition Coefficient Octanol/Water and the Water Solubility of Drugs on their Permeability and Maximum Flux. J Pharm Pharmacol 1997; 49: 30-34
- 7 Walters KA, Flynn G, Marvel J. Physicochemical characterization of the human nail: permeation pattern for water and the homologous alcohols and differences with the respect to the human stratum corneum. J Pharm Pharmacol 1983; 35: 28-33
- 8 Gupchup G, Zatz J. Structural characteristics and permeability properties of the human nail: A review. J Cosmet Sci 1999; 50: 363-385
- 9 Saner MV, Kulkarni AD, Pardeshi CV. Insights into drug delivery across the nail plate barrier. J Drug Target 2014; 22: 769-789
- 10 Traynor MJ, Turner RB, Evans CRG et al. Effect of a novel penetration enhancer on the ungual permeation of two antifungal agents. J Pharm Pharmacol 2010; 62: 730-737
- 11 Sleven R, Lanckacker E, Boulet G et al. Development of a novel in vitro onychomycosis model for the evaluation of topical antifungal activity. J Microbiol Meth 2015; 112: 73-75
- 12 Walters KA, Abdalghafor HM, Lane ME. The human nail – Barrier characterisation and permeation enhancement. Int J Pharm 2012; 435: 10-21
- 13 Vellar O. Composition of human nail substance. Am J Clin Nutr 1970; 23: 1272-1274
- 14 Brown M, Khengar R, Turner R et al. Overcoming the nail barrier: A systematic investigation of ungual chemical penetration enhancement. Int J Pharm 2009; 370: 61-67
- 15 de Berker D, André J, Baran R. Nail biology and nail science. Int J Cosm Sci 2007; 29: 241-275
- 16 Harding CR. The stratum corneum: structure and function in health and disease. Dermatol Ther 2004; 17: 6-15
- 17 Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control 2006; 34: S98
- 18 Dubey V, Mishra D, Nahar M et al. Vesicles as tools for the modulation of skin permeability. Expert Opin Drug Deliv 2007; 4: 579-593
- 19 Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical location on the body, age, sex and physical parameters. Ar Dermatol Res 1999; 291: 555-559
- 20 Reddy M, Guy R, Bunge A. Does Epidermal Turnover Reduce Percutaneous Penetration?. Pharm Res 2000; 17: 1414-1419
- 21 Nemes Z, Steinert PM. Bricks and mortar of the epidermal barrier. Exp Mol Med 1999; 31: 5-19
- 22 Proksch E, Brandner JM, Jensen J. The skin: an indispensable barrier. Exp Dermatol 2008; 17: 1063-1072
- 23 Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 2002; 24: 789-800
- 24 Wertz PW, van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 1998; 91: 85-96
- 25 Madison K. Barrier Function of the Skin: “La raison d’ Être” of the Epidermis. J Invest Dermatol 2003; 121: 231-241
- 26 Havlickova B, Czaika V, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008; 51: 2-15
- 27 Roberts D. Onychomycosis: current treatment and future challenges. Brit J Dermatol 1999; 141: 1-4
- 28 Murdan S. Drug delivery to the nail following topical application. Int J Pharm 2002; 236: 1-26
- 29 Sigurgeirsson B, Baran R. The prevalence of onychomycosis in the global population – A literature study. J Eur Acad Dermatol Venereol 2014; 28: 1480-1491
- 30 Finch J, Warshaw E. Toenail onychomycosis: current and future treatment options. Dermatol Ther 2007; 20: 31-46
- 31 Shemer A, Gupta A, Farhi R et al. When is onychomycosis onychomycosis? A cross-sectional study of fungi in normal-appearing nails. Brit J Dermatol 2015; 172: 380-383
- 32 U.S. Department of Health and Human Services. Medical Devices and Clinical Trial Design for the Treatment or Improvement in the Appearance of Fungally-Infected Nails. Draft Guideline for Industry and Food Drug Administration Staff. 2015
- 33 Tabara K, Szewczyk AE, Bienias W et al. Amorolfine vs. ciclopirox – lacquers for the treatment of onychomycosis. Adv Dermatol Allergology 2015; 1: 40-45
- 34 Lauharanta J. Comparative efficacy and safety of amorolfine nail lacquer 2 % versus 5 % once weekly. Clin Exp Dermatol 1992; 17: 41-43
- 35 Reinel D, Clarke C. Comparative efficacy and safety of amorolfine nail lacquer 5 % in onychomycosis, once-weekly versus twice-weekly. Clin Exp Dermatol 1992; 17: 44-49
- 36 Abrams BB, Hänel H, Hoehler T. Ciclopirox olamine: A hydroxypyridone antifungal agent. Clin Dermatol 1991; 9: 471-477
- 37 Gupta AK, Skinner AR, Cooper EA. Evaluation of the efficacy of ciclopirox 0.77 % gel in the treatment of tinea pedis interdigitalis (dermatophytosis complex) in a randomized, double-blind, placebo-controlled trial. Int Soc Dermatol 2005; 44: 590-593
- 38 Gupta AK. Ciclopirox: an overview. Int J Dermatol 2001; 40: 305-310
- 39 Subissi A, Monti D, Togni G et al. Ciclopirox Recent Nonclinical and Clinical Data Relevant to its Use as a Topical Antimycotic Agent. Drugs 2010; 70: 2133-2152
- 40 Shemer A, Nathanson N, Trau H et al. Ciclopirox nail lacquer for the treatment of onychomycosis: An open non-comparative study. J Dermatol 2010; 37: 137-139
- 41 Baran R, Tosti A, Hartmane I et al. An innovative water-soluble biopolymer improves efficacy of ciclopirox nail lacquer in the management of onychomycosis. J Eur Acad Dermatol 2009; 23: 773-781
- 42 Täuber A, Müller-Goymann CC. In vitro permeation and penetration of ciclopirox olamine from poloxamer 407-based formulations – comparison of isolated human stratum corneum, bovine hoof plates and keratin films. Int J Pharm 2015; 489: 73-82
- 43 Uchida K, Tanaka T, Yamaguchi H. Achievement of Complete Mycological Cure by Topical Antifungal Agent NND502 in Guinea Pig Model of Tinea Pedis. Microbiol Immunol 2003; 42: 143-146
- 44 Koga H, Nanjoh Y, Kaneda H et al. Short-Term Therapy with Luliconazole, a Novel Topical Antifungal Imidazole, in Guinea Pig Models of Tinea Corporis and Tinea Pedis. Antimicrob Agents Ch 2012; 56: 3138-3143
- 45 Scher RK, Nakamura N, Tavakkol A. Luliconazole: a review of a new antifungal agent for the topical treatment of onychomycosis. Mycoses 2014; 57: 389-393
- 46 Vejnovic I, Huonder C, Betz G. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro. Int J Pharm 2010; 397: 67-76
- 47 Elewski BE, Ghannoum MA, Mayser P et al. Efficacy, safety and tolerability of topical terbinafine nail solution in patients with mild-to-moderate toenail onychomycosis: results from three randomized studies using double-blind vehicle-controlled and open-label active-controlled designs. J Eur Acad Dermatol 2013; 27: 287-294
- 48 Dominicus R, Weidner C, Tate H et al. Open-label study of the efficacy and safety of topical treatment with TDT 067 (terbinafine in Transfersome®) in patients with onychomycosis. Brit J Dermatol 2012; 166: 1360-1362
- 49 The United States Pharmacopeial Convention. (725) Topical and Transdermal Drug Products – Product Performance Tests. Pharmacopeial Forum; 2009 35.
- 50 Nakashima T, Nozawa A, Ito T et al. Experimental tinea unguium model to assess topical antifungal agents using the infected human nail with dermatophyte in vitro. J Infect Chemother 2002; 8: 331-335
- 51 Lusiana . Reichl S, Müller-Goymann C. Infected nail plate model made of human hair keratin for evaluating the efficacy of different topical antifungal formulations against Trichophyton rubrum in vitro. Eur J Pharm Biopharm 2013; 84: 599-605