Horm Metab Res 2015; 47(01): 43-47
DOI: 10.1055/s-0034-1390446
Commentary
© Georg Thieme Verlag KG Stuttgart · New York

Humanized Mouse Models for Type 1 Diabetes Including Pancreatic Islet Transplantation

S. Rahmig
1   Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
,
S. R. Bornstein
2   Department of Internal Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
,
T. Chavakis
2   Department of Internal Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
3   Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
,
E. Jaeckel
4   Hannover Medical School, Department of Gastroenterology, Hepatology & Endocrinology, Hannover, Germany
,
C. Waskow
1   Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
› Author Affiliations
Further Information

Publication History

received 27 July 2014

accepted 08 September 2014

Publication Date:
04 November 2014 (online)

Abstract

We comment here on the suitability of available mouse models for type 1 diabetes research including research on therapeutic pancreatic islet transplantation. The major emphasis will be laid on models that require minimal invasive procedures.

Most biological processes are too complex for a complete recapitulation in a test tube. The study of innate or even adaptive immune responses involves a number of different cell types and organs making in vitro studies unreliable but also providing extreme challenges for the use of surrogate model organisms. Studying these processes directly in humans is impossible due to ethical and technical constraints. To resolve this problem small animal models such as mice or rats are frequently used to study mechanisms of complex diseases. This has brought much insight into hematopoiesis and immune cell function including type 1 diabetes (T1D); however, 65 million years of evolution introduced striking differences between mice and humans [1]. In fact, none of the many suggested therapies arising from studies using mice [2] [3] that have promised prevention or even reversion of T1D made it into the clinic yet [4] [5] [6]. The reason for this are major species-specific differences between rodents and humans regarding the immune system and beta cells.

 
  • References

  • 1 Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731-2738
  • 2 Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets?. Nat Med 1999; 5: 601-604
  • 3 Greiner DL, Rossini AA, Mordes JP. Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. Clin Immunol 2001; 100: 134-143
  • 4 Couzin-Frankel J. Clinical studies. Trying to reset the clock on type 1 diabetes. Science 2011; 333: 819-821
  • 5 Greenbaum C, Atkinson MA. Persistence is the twin sister of excellence: an important lesson for attempts to prevent and reverse type 1 diabetes. Diabetes 2011; 60: 693-694
  • 6 Herold KC. Restoring immune balance in type 1 diabetes. Lancet Diabetes Endocrinol 2013; 1: 261-263
  • 7 Butler PC, Meier JJ, Butler AE, Bhushan A. The replication of beta cells in normal physiology, in disease and for therapy. Nat Clin Pract Endocrinol Metab 2007; 3: 758-768
  • 8 Roep BO. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann N Y Acad Sci 2007; 1103: 1-10
  • 9 Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, Roep BO, von Herrath MG. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 2012; 209: 51-60
  • 10 Hunig T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat Rev Immunol 2012; 12: 317-318
  • 11 King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, Atkinson MA, Wasserfall C, Herold KC, Woodland RT, Schmidt MR, Woda BA, Thompson MJ, Rossini AA, Greiner DL. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 2008; 126: 303-314
  • 12 Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunnigham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26: 443-452
  • 13 Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009; 19: 429-438
  • 14 Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 1997; 46: 887-894
  • 15 Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18: 7499-7509
  • 16 Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117: 2553-2561
  • 17 Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 1149-1154
  • 18 Brehm MA, Bortell R, Diiorio P, Leif J, Laning J, Cuthbert A, Yang C, Herlihey M, Burzenski L, Gott B, Foreman O, Powers AC, Greiner DL, Shultz LD. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes 2010; 59: 2265-2270
  • 19 Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118-130
  • 20 van Halteren AG, Kardol MJ, Mulder A, Roep BO. Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice. Diabetologia 2005; 48: 75-82
  • 21 Cohen J. Toxicology. ‘Humanized’ mouse detects deadly drug side effects. Science 2014; 344: 244-245
  • 22 Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256-259
  • 23 Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012; 12: 786-798
  • 24 King M, Pearson T, Shultz LD, Leif J, Bottino R, Trucco M, Atkinson M, Wasserfall C, Herold K, Mordes JP, Rossini AA, Greiner DL. Development of new-generation HU-PBMC-NOD/SCID mice to study human islet alloreactivity. Ann N Y Acad Sci 2007; 1103: 90-93
  • 25 Brehm MA, Powers AC, Shultz LD, Greiner DL. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harbor Perspect Med 2012; 2: a007757
  • 26 Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA. Transgenic expression of human signal regulatory protein alpha in Rag2-/-{gamma}c-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 2011; 108: 13218-13223
  • 27 Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, de Geus SJ, Pouw SM, Böhne M, Voordow A, Weijer K, Di Santo JP, Spits H. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 2011; 108: 13224-13229
  • 28 Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, Scott D, Peterson KE, Chan CK, Dittmer U, Dudek T. BLT-humanized C57BL/6 Rag2-/-gammac-/-CD47-/- mice are resistant to GVHD and develop B and T cell immunity to HIV infection. Blood 2013; 122: 4013-4020
  • 29 Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, Liu L, Meng A, Shapless NE, Zhou D. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in an Ink4a- and Arf-independent manner. Blood 2014; 123: 3105-3115
  • 30 Shen H, Yu H, Liang PH, Cheng H, XuFeng R, Yuan Y, Peng Z, Smith CA, Cheng T. An acute negative bystander effect of gamma-irradiated recipients on transplanted hematopoietic stem cells. Blood 2012; 119: 3629-3637
  • 31 Carbonneau CL, Despars G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T, Beauséjour CM. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 2012; 119: 717-726
  • 32 Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 2009; 106: 21783-21788
  • 33 Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A, Gott B, Herlihy M, Iggnotz R, Dunn R, Shultz LD, Greiner DL. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 2012; 119: 2778-2788
  • 34 Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18: 341-347
  • 35 Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, Hasegawa T, Mochizuki S, Kunisawa J, Kiyono H, Koseki H, Ohara O, Saito T, Taniguchi S, Shultz LD, Ishikava F. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood 2012; 119: 2768-2777
  • 36 Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y, Marches F, Halene S, Palucka AK, Manz MG, Flavell RA. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32: 364-372
  • 37 Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Eynon EE, Stevens S, Manz MG, Flavell RA. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378-2383
  • 38 Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, Auerbach W, Eynon EE, Stevens S, Manz MG, Flavell RA. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390-2395
  • 39 Waskow C, Madan V, Bartels S, Costa C, Blasig R, Rodewald HR. Hematopoietic stem cell transplantation without irradiation. Nat Meth 2009; 6: 267-269
  • 40 Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P, Besmer P. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J 1990; 9: 1805-1813
  • 41 Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schafer C, Petzold A, Weisbach H, Heidkamp G, Purbojo A, Cesnjevar R, Platz A, Bornhäuser M, Schmitz M, Dudziak D, Hauber J, Kirberg J, Waskow C. Kit Regulates HSC Engraftment across the Human-Mouse Species Barrier. Cell Stem Cell 2014; 15: 227-238
  • 42 Scheeren FA, Nagasawa M, Weijer K, Cupedo T, Kirberg J, Legrand N, Spits H. T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med 2008; 205: 2033-2042
  • 43 Yi S, Ji M, Wu J, Ma X, Phillips P, Hawthorne WJ, O’Connell PJ. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice. Diabetes 2012; 61: 1180-1191
  • 44 Jin X, Wang Y, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Enhanced suppression of the xenogeneic T-cell response in vitro by xenoantigen stimulated and expanded regulatory T cells. Transplantation 2014; 97: 30-38
  • 45 Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, Wujtewicz MA, Witkovski P, Młynarski W, Balcerska A, Myliwska J, Trzonkowski P. Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care 2012; 35: 1817-1820
  • 46 Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61: 1527-1532
  • 47 Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104-107
  • 48 Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006; 12: 1316-1322
  • 49 Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006; 108: 487-492
  • 50 Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005; 106: 1565-1573
  • 51 Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175-3182