J Knee Surg 2015; 28(01): 045-050
DOI: 10.1055/s-0034-1390329
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cellular Chondroplasty: A New Technology for Joint Regeneration

Mary Murphy
1   Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
,
Frank Barry
1   Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
› Author Affiliations
Further Information

Publication History

14 July 2014

12 August 2014

Publication Date:
30 September 2014 (online)

Abstract

Cellular therapy involves the isolation, expansion, and transplantation of human cells for the replacement or regeneration of injured tissues. It is one of the most significant tissue repair strategies in the emerging discipline of regenerative medicine. Cellular strategies have been applied in joint repair for the treatment of acute cartilage injury, meniscal repair, and osteoarthritis (OA). Many of these efforts have been motivated by the apparent incapacity of cartilage to repair itself and the observation that initial trauma is likely to lead to sustained joint degeneration. A particularly important question that arises about cellular therapy in OA relates to the long-term outcome of these procedures. In addition, questions remain about the most suitable cell source, the advantages of allogeneic over autologous therapy, their potential uses in late stage OA, and, not least, the logistics of manufacturing and supply. These topics are discussed in this review, as well as an evaluation of knowledge gaps and technical obstacles that remain to be addressed.

 
  • References

  • 1 http://www.apligraf.com/ . Accessed September 9, 2014
  • 2 http://www.carticel.com/ . Accessed September 9, 2014
  • 3 http://www.provenge.com/ . Accessed September 9, 2014
  • 4 http://www.osiris.com/therapeutics.php . Accessed September 9, 2014
  • 5 Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 2013; 9 (10) 584-594
  • 6 Gomoll AH, Minas T. The quality of healing: articular cartilage. Wound Repair Regen 2014; 22 (Suppl. 01) 30-38
  • 7 Anderson DD, Chubinskaya S, Guilak F , et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 2011; 29 (6) 802-809
  • 8 Giannini S, Buda R, Ruffilli A , et al. Failures in bipolar fresh osteochondral allograft for the treatment of end-stage knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2014; ; April 4 (Epub ahead of print)
  • 9 Grande DA, Singh IJ, Pugh J. Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat Rec 1987; 218 (2) 142-148
  • 10 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 11 Ronga M, Grassi FA, Bulgheroni P. Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. Arthroscopy 2004; 20 (1) 79-84
  • 12 Nawaz SZ, Bentley G, Briggs TW , et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am 2014; 96 (10) 824-830
  • 13 Macmull S, Parratt MT, Bentley G , et al. Autologous chondrocyte implantation in the adolescent knee. Am J Sports Med 2011; 39 (8) 1723-1730
  • 14 Schneider U, Rackwitz L, Andereya S , et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 2011; 39 (12) 2558-2565
  • 15 Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16 (3) 381-390
  • 16 Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3 (4) 393-403
  • 17 Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60
  • 18 Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100 (9) 1249-1260
  • 19 Crisan M, Yap S, Casteilla L , et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3 (3) 301-313
  • 20 Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 2008; 26 (3) 591-599
  • 21 Flynn A, Barry F, O'Brien T. UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 2007; 9 (8) 717-726
  • 22 Dominici M, Le Blanc K, Mueller I , et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4) 315-317
  • 23 De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44 (8) 1928-1942
  • 24 Jones EA, Crawford A, English A , et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008; 58 (6) 1731-1740
  • 25 Sekiya I, Ojima M, Suzuki S , et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 2012; 30 (6) 943-949
  • 26 Jones EA, English A, Henshaw K , et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50 (3) 817-827
  • 27 Morito T, Muneta T, Hara K , et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 2008; 47 (8) 1137-1143
  • 28 Lee DH, Sonn CH, Han SB, Oh Y, Lee KM, Lee SH. Synovial fluid CD34 CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 2012; 20 (2) 106-109
  • 29 Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE. Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 2012; 45 (2) 111-120
  • 30 Murray MM, Bennett R, Zhang X, Spector M. Cell outgrowth from the human ACL in vitro: regional variation and response to TGF-beta1. J Orthop Res 2002; 20 (4) 875-880
  • 31 Cheng MT, Yang HW, Chen TH, Lee OK. Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif 2009; 42 (4) 448-460
  • 32 Dowthwaite GP, Bishop JC, Redman SN , et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117 (Pt 6) 889-897
  • 33 Khan IM, Bishop JC, Gilbert S, Archer CW. Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cartilage 2009; 17 (4) 518-528
  • 34 Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50 (5) 1522-1532
  • 35 Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 2002; 46 (3) 704-713
  • 36 Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48 (12) 3464-3474
  • 37 Diekman BO, Wu CL, Louer CR , et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant 2013; 22 (8) 1395-1408
  • 38 Horie M, Choi H, Lee RH , et al. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage 2012; 20 (10) 1197-1207
  • 39 Toghraie F, Razmkhah M, Gholipour MA , et al. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 2012; 15 (8) 495-499
  • 40 Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 2012; 47 (6) 458-464
  • 41 Sato M, Uchida K, Nakajima H , et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 2012; 14 (1) R31
  • 42 ter Huurne M, Schelbergen R, Blattes R , et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 2012; 64 (11) 3604-3613