Int Arch Otorhinolaryngol 2014; 18(S 02): S127-S135
DOI: 10.1055/s-0034-1390013
Review Article
Thieme Publicações Ltda Rio de Janeiro, Brazil

Advances in Magnetic Resonance Imaging of the Skull Base

Claudia F.E. Kirsch
1   Department of Radiology, Wexner Medical Center, Ohio State University College of Medicine, Columbus, Ohio, United States
› Author Affiliations
Further Information

Publication History

Publication Date:
10 October 2014 (online)

Abstract

Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base.

Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies.

Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation.

Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies.

 
  • References

  • 1 Smith J. Recommendations of IEC Technical Committee 24: electric and magnetic magnitudes and units. Electr Eng 1955; 74: 406-408
  • 2 Geva T. Magnetic resonance imaging: historical perspective. J Cardiovasc Magn Reson 2006; 8 (4) 573-580
  • 3 Rabi II, Zacharias JR, Millman S, Kusch P. A new method of measuring nuclear magnetic moment. Phys Rev 1938; 53: 318
  • 4 Bloch F, Hansen W, Packard M. Nuclear induction. Phys Rev 1946; 69: 127
  • 5 Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69: 37
  • 6 Damadian R. Tumor detection by nuclear magnetic resonance. Science 1971; 171 (3976) 1151-1153
  • 7 Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973; 242: 190-191
  • 8 Willinek WA, Schild HH. Clinical advantages of 3.0 T MRI over 1.5 T. Eur J Radiol 2008; 65 (1) 2-14
  • 9 Welker KM, Tsuruda JS, Hadley JR, Hayes CE. Radio-frequency coil selection for MR imaging of the brain and skull base. Radiology 2001; 221 (1) 11-25
  • 10 Driscoll CLW, Lane JI. Advances in skull base imaging. Otolaryngol Clin North Am 2007; 40 (3) 439-454 , vii
  • 11 Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves—more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 2008; 18 (2) 197-231 , x
  • 12 Linn J, Peters F, Moriggl B, Naidich TP, Brückmann H, Yousry I. The jugular foramen: imaging strategy and detailed anatomy at 3T. AJNR Am J Neuroradiol 2009; 30 (1) 34-41
  • 13 Roldan-Valadez E, Martinez-Anda JJ, Corona-Cedillo R. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians. Clin Anat 2014; 27 (1) 31-45
  • 14 Algin O, Hakyemez B, Gokalp G, Ozcan T, Korfali E, Parlak M. The contribution of 3D-CISS and contrast-enhanced MR cisternography in detecting cerebrospinal fluid leak in patients with rhinorrhoea. Br J Radiol 2010; 83 (987) 225-232
  • 15 Linn J, Peters F, Lummel N , et al. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3.  Tesla using a contrast-enhanced MR angiography. Neuroradiology 2011; 53 (12) 947-954
  • 16 Kasaliwal R, Sankhe SS, Lila AR , et al. Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas. Clin Endocrinol (Oxf) 2013; 78 (6) 825-830
  • 17 Fukuoka H, Takumi Y, Tsukada K , et al. Comparison of the diagnostic value of 3 T MRI after intratympanic injection of GBCA, electrocochleography, and the glycerol test in patients with Meniere's disease. Acta Otolaryngol 2012; 132 (2) 141-145
  • 18 Barath K, Schuknecht B, Naidi AM , et al. Detection and grading of endolymphatic hydrops in Meniere disease using MRI imaging. AJNR Am J Neuroradiol 2014; 35: 1-6
  • 19 Una A, Horii A, Imai T , et al. Endolymphatic hydrops detected with inner ear Gd contrast-enhanced MRI; comparison between administration routes or with ECochG or glycerol test. Nihon Jibinkoka Gakkai 2013; 116 (80) 960-968
  • 20 Schmalfuss IM, Tart RP, Mukherji S, Mancuso AA. Perineural tumor spread along the auriculotemporal nerve. AJNR Am J Neuroradiol 2002; 23 (2) 303-311
  • 21 Penn R, Abemayor E, Nabili V, Bhuta S, Kirsch C. Perineural invasion detected by high-field 3.0-T magnetic resonance imaging. Am J Otolaryngol 2010; 31 (6) 482-484
  • 22 Kastrup O, Wanke I, Maschke M. Neuroimaging of infections. NeuroRx 2005; 2 (2) 324-332
  • 23 Ozgen B, Oguz KK, Cila A. Diffusion MR imaging features of skull base osteomyelitis compared with skull base malignancy. AJNR Am J Neuroradiol 2011; 32 (1) 179-184
  • 24 Lai PH, Ho JT, Chen WL , et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002; 23 (8) 1369-1377
  • 25 Patel KB, Poplawski MM, Pawha PS, Naidich TP, Tanenbaum LN. Diffusion-weighted MRI “claw sign” improves differentiation of infectious from degenerative modic type 1 signal changes of the spine. AJNR Am J Neuroradiol 2014; ; (e-pub ahead of print)
  • 26 Edfeldt L, Strömbäck K, Danckwardt-Lillieström N, Rask-Andersen H, Abdsaleh S, Wikström J. Non-echo planar diffusion-weighted MRI increases follow-up accuracy after one-step step canal wall-down obliteration surgery for cholesteatoma. Acta Otolaryngol 2013; 133 (6) 574-583
  • 27 Sharifian H, Taheri E, Borghei P , et al. Diagnostic accuracy of non-echo-planar diffusion-weighted MRI versus other MRI sequences in cholesteatoma. J Med Imaging Radiat Oncol 2012; 56 (4) 398-408
  • 28 Dremmen MH, Hofman PA, Hof JR, Stokroos RJ, Postma AA. The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol 2012; 33 (3) 439-444
  • 29 Jindal M, Riskalla A, Jiang D, Connor S, O'Connor AF. A systematic review of diffusion-weighted magnetic resonance imaging in the assessment of postoperative cholesteatoma. Otol Neurotol 2011; 32 (8) 1243-1249
  • 30 Yeom KW, Lober RM, Mobley BC , et al. Diffusion-weighted MRI: distinction of skull base chordoma from chondrosarcoma. AJNR Am J Neuroradiol 2013; 34 (5) 1056-1061 , S1
  • 31 Fischbein NJ, Kaplan MJ. Magnetic resonance imaging of the central skull base. Top Magn Reson Imaging 1999; 10 (5) 325-346
  • 32 Nitz WR, Bradley Jr WG, Watanabe AS , et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 1992; 183 (2) 395-405
  • 33 Yildiz H, Yazici Z, Hakyemez B, Erdogan C, Parlak M. Evaluation of CSF flow patterns of posterior fossa cystic malformations using CSF flow MR imaging. Neuroradiology 2006; 48 (9) 595-605
  • 34 Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol 2011; 84 (1004) 758-765
  • 35 Mbonane S, Andronikou S. Interpretation and value of MR CSF flow studies for paediatric neurosurvery. S. Afr J Rad 2013; 17 (1) 26-29
  • 36 Knobloch V, Binter C, Kurtcuoglu V, Kozerke S. Arterial, venous, and cerebrospinal fluid flow: simultaneous assessment with Bayesian multipoint velocity-encoded MR imaging. Radiology 2014; 270 (2) 566-573
  • 37 Wang CS, Wang X, Fu CH, Wei LQ, Zhou DQ, Lin JK. Analysis of cerebrospinal fluid flow dynamics and morphology in Chiari I malformation with cine phase-contrast magnetic resonance imaging. Acta Neurochir (Wien) 2014; 156 (4) 707-713
  • 38 Yamada S, Miyazaki M, Kanazawa H , et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology 2008; 249 (2) 644-652
  • 39 Baumann F, Schmid C, Bernays RL. Intraoperative magnetic resonance imaging-guided transsphenoidal surgery for giant pituitary adenomas. Neurosurg Rev 2010; 33 (1) 83-90
  • 40 Choudhri O, Mindea SA, Feroze A, Soudry E, Chang SD, Nayak JV. Experience with intraoperative navigation and imaging during endoscopic transnasal spinal approaches to the foramen magnum and odontoid. Neurosurg Focus 2014; 36 (3) E4
  • 41 Copeland WR, Hoover JM, Morris JM, Driscoll CL, Link MJ. Use of preoperative MRI to predict vestibular schwannoma intraoperative consistency and facial nerve outcome. J Neurol Surg B Skull Base 2013; 74 (6) 347-350