Aktuelle Ernährungsmedizin 2015; 40(02): 88-92
DOI: 10.1055/s-0034-1387602
© Georg Thieme Verlag KG Stuttgart · New York

Nutrigenomics: Toward a Cross-Disciplinary Understanding of Nutrient-Driven Networks in Health and Disease

What Can we Learn from the Study of Cross-Talk in Complex Protein Kinase and Metabolic Networks?Nutrigenenomik: Interdisziplinäre Forschung zum besseren Verständnis von ernährungsbedingten Einflüssen bei der Entstehung- und Behandlung von KrankheitenWas können wir aus der Analyse der Interaktion von Signaltransduktion und Stoffwechselwegen lernen?
I. Heiland
1   Department of Arctic and Marine Biology, UiT Arctic University of Norway, Naturfagbygget, Tromsø, Norway
K. Thedieck
2   Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
3   Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
28 April 2015 (online)


Die Nutrigenomik untersucht an der Grenze zwischen Life Sciences und Medizin den Einfluss von Nahrungskomponenten auf molekulare Prozesse über alle Skalen hinweg, von der Zelle bis hin zum gesamten Organismus. Eine breite Methodenpalette von Hoch-, Mittel- und Niedrigdurchsatzverfahren sowie bioinformatischen und computergestützten Modellierungsansätzen hat in den letzten Jahren zu neuen Einblicken in die molekularen Antworten auf Nährstoffe und deren Einfluss auf eine Reihe von Krankheitsbildern geführt. Anhand der Beispiele der mammalian target of rapamycin (mTOR)-, aminosäure- und NAD-abhängigen Signalwege diskutieren wir neue Entwicklungen in der Nutrigenomik und ihren möglichen Beitrag zur Entwicklung von zielgerichteteten und individualisierten Ernährungsinterventionen.


The emerging discipline of nutrigenomics analyzes the impact of dietary components on health and disease at all scales from cell to organism. Using a wide range of high, medium, and low throughput experimental techniques, bioinformatics and computational modeling, we have in recent years gained some insight into molecular mechanisms underlying nutritional responses and their impact on a wide range of diseases, including neuroinflammatory, neurodegenerative and metabolic diseases, as well as cancer.

Focusing on the examples of mammalian target of rapamycin (mTOR), amino acid, and NAD-dependent signaling in the context of mal- and overnutrition, and caloric restriction, we discuss recent advances in nutrigenomics and their future promises for the development of targeted nutritional interventions.

  • References

  • 1 van Abeelen AF, Elias SG, Bossuyt PM et al. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 2012; 61: 2255-2260
  • 2 Veenendaal MV, Painter RC, de Rooij SR et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG 2013; 120: 548-553
  • 3 Elias SG, Peeters PH, Grobbee DE et al. Transient caloric restriction and cancer risk (The Netherlands). Cancer Causes Control 2007; 18: 1-5
  • 4 Nelissen EC, Van Montfoort AP, Smits LJ et al. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy. Hum Reprod 2013; 28: 2067-2074
  • 5 Dumoulin JC, Land JA, Van Montfoort AP et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod 2010; 25: 605-612
  • 6 Kleijkers SH, van Montfoort AP, Smits LJ et al. IVF culture medium affects post-natal weight in humans during the first 2 years of life. Hum Reprod 2014; 29: 661-669
  • 7 Martorell R, Stein AD, Schroeder DG. Early nutrition and later adiposity. J Nutr 2001; 131: 874S-880S
  • 8 Quilter CR, Cooper WN, Cliffe KM et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J 2014; 28: 4868-4879
  • 9 Radford EJ, Ito M, Shi H et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014; 345: 1255903
  • 10 Sachlova M, Majek O, Tucek S. Prognostic Value of Scores Based on Malnutrition or Systemic Inflammatory Response in Patients With Metastatic or Recurrent Gastric Cancer. Nutr Cancer 2014; 1-9
  • 11 Loeffen EA, Brinksma A, Miedema KG et al. Clinical implications of malnutrition in childhood cancer patients-infections and mortality. Support Care Cancer 2015; 23: 143-150
  • 12 Fijlstra M, Tissing WJ, Stellaard F et al. Reduced absorption of long-chain fatty acids during methotrexate-induced gastrointestinal mucositis in the rat. Clin Nutr 2013; 32: 452-459
  • 13 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557-2576
  • 14 Kohsaka A, Laposky AD, Ramsey KM et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414-421
  • 15 Colman RJ, Beasley TM, Kemnitz JW et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 2014; 5: 3557
  • 16 Mattison JA, Roth GS, Beasley TM et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489: 318-321
  • 17 McCay CM, Crowell MF, Maynard LA. The Effect of Retarded Growth Upon the Length of Life Span and Upon the Ultimate Body Size: One Figure. The Journal of Nutrition 1935; 10: 63-79
  • 18 Matsuoka Y, Matsumae H, Katoh M et al. A comprehensive map of the influenza A virus replication cycle. BMC Syst Biol 2013; 7: 97
  • 19 Hase T, Ghosh S, Yamanaka R et al. Harnessing diversity towards the reconstructing of large scale gene regulatory networks. PLoS Comput Biol 2013; 9: e1003361
  • 20 D’Alessandro LA, Meyer R, Klingmuller U. Hepatocellular carcinoma: a systems biology perspective. Front Physiol 2013; 4: 28
  • 21 Boehm ME, Adlung L, Schilling M et al. Identification of Isoform-Specific Dynamics in Phosphorylation-Dependent STAT5 Dimerization by Quantitative Mass Spectrometry and Mathematical Modeling. J Proteome Res 2014; 13: 5685-5694
  • 22 Stavrum AK, Heiland I, Schuster S et al. Model of tryptophan metabolism, readily scalable using tissue-specific gene expression data. J Biol Chem 2013; 288: 34555-34566
  • 23 Dalle Pezze P, Sonntag AG, Thien A et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal 2012; 5: ra25
  • 24 Harrison DE, Strong R, Sharp ZD et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 392-395
  • 25 Hansen M, Chandra A, Mitic LL et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4: e24
  • 26 Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012; 52: 381-400
  • 27 Benjamin D, Colombi M, Moroni C et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868-880
  • 28 Nyman E, Rohini Rajan M, Fagerholm S et al. A Single Mechanism can Explain Network-Wide Insulin Resistance in Adipocytes from Obese Patients with Type 2 Diabetes. J Biol Chem 2014; 289: 33215-33230
  • 29 Thedieck K, Sonntag A, Shanley D et al. Method for modelling, optimizing, parameterizing, testing and/or validating a dynamic network or network perturbations. Patent publication number WO2012163440 A8
  • 30 Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013; 35: 463-473
  • 31 Ban H, Shigemitsu K, Yamatsuji T et al. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med 2004; 13: 537-543
  • 32 Metz R, Rust S, Duhadaway JB et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology 2012; 1: 1460-1468
  • 33 Schwarcz R, Bruno JP, Muchowski PJ et al. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13: 465-477
  • 34 Opitz CA, Litzenburger UM, Sahm F et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197-203
  • 35 Campbell BM, Charych E, Lee AW et al. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8: 12
  • 36 Rios-Avila L, Nijhout HF, Reed MC et al. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J Nutr 2013; 143: 1509-1519
  • 37 Choi S, DiSilvio B, Fernstrom MH et al. The chronic ingestion of diets containing different proteins produces marked variations in brain tryptophan levels and serotonin synthesis in the rat. Neurochem Res 2011; 36: 559-565
  • 38 Wan P, Moat S, Anstey A. Pellagra: a review with emphasis on photosensitivity. Br J Dermatol 2011; 164: 1188-1200
  • 39 Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol 2013; 9: 300-306
  • 40 Chiarugi A, Dolle C, Felici R et al. The NAD metabolome – a key determinant of cancer cell biology. Nat Rev Cancer 2012; 12: 741-752
  • 41 Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007; 32: 12-19
  • 42 Houtkooper RH, Canto C, Wanders RJ et al. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31: 194-223
  • 43 Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 2004; 29: 111-118
  • 44 DiPalma JR, Thayer WS. Use of niacin as a drug. Annu Rev Nutr 1991; 11: 169-187
  • 45 Feige JN, Lagouge M, Canto C et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8: 347-358
  • 46 Brandauer J, Vienberg SG, Andersen MA et al. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. J Physiol 2013; 591: 5207-5220