Fortschr Neurol Psychiatr 2014; 82(10): 566-571
DOI: 10.1055/s-0034-1385024
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Optische Kohärenztomografie (OCT) – ein neues diagnostisches Instrument in der Psychiatrie?

Optical Coherence Tomography (OCT) – A New Diagnostic Tool in Psychiatry?
C. Schönfeldt-Lecuona*
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
A. Schmidt*
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
E. H. Pinkhardt
2   Abteilung für Neurologie, Rehabilitationskrankenhaus Ulm (RKU), Ulm
,
F. Lauda
2   Abteilung für Neurologie, Rehabilitationskrankenhaus Ulm (RKU), Ulm
,
B. J. Connemann
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
R. W. Freudenmann
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
M. Gahr
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

21 May 2014

22 July 2014

Publication Date:
09 October 2014 (online)

Zusammenfassung

Die optische Kohärenztomografie (OCT) ist ein nicht-invasives, kontaktloses bildgebendes Verfahren, das eine „In-vivo“-Darstellung der Retina ermöglicht. Die OCT ermöglicht die quantitative Messung der retinalen Nervenfaserschichtdicke (RNFLT) und der Makuladicke (MT) und ist außerdem geeignet, Volumina wie z. B. das Makulavolumen (MV) zu messen. In jüngster Zeit fand sie zunehmend Anwendung im Bereich neurodegenerativer Erkrankungen und demonstrierte ihr Potential als ein mögliches diagnostisches Instrument. In den letzten Jahren etablierte sich durch verschiedene volumetrische MRT-Studien die Hypothese, dass auch psychische Störungen wie die Schizophrenie oder die unipolare Depression eine degenerative Komponente besitzen. Mit dieser Übersichtsarbeit möchten wir die Methode der OCT erläutern, auf deren Einsatz in der Medizin und ihre bisherige Anwendung in der Psychiatrie eingehen sowie weitere Anwendungsmöglichkeiten im psychiatrischen Fachgebiet beleuchten.

Abstract

Optical coherence tomography (OCT) is a non-invasive, contact-less imaging method which provides an “in vivo” representation of the retina. It allows the quantitative measurement of retinal nerve fibre layer thickness (RNFLT) and macula thickness (MT) and, in addition, is suitable to measure volumes (e. g., macula volume/MV). In the research of neurodegenerative diseases, OCT has been increasingly used and has shown its potential as a possible diagnostic tool over the course of the last few years. In recent years, the hypothesis that mental disorders like schizophrenia or unipolar depressive disorder have a degenerative component was established through a variety of volumetric MRI studies. This review article aims to present the method of OCT, to display its recent use in medicine and psychiatry, as well as to examine possible additional applications in the field of psychiatry.

* Die beiden Autoren teilen sich die Erstautorenschaft


 
  • Literatur

  • 1 Boeve BF. Progressive supranuclear palsy. Parkinsonism Relat Disord 2012; 18: S192-S194
  • 2 Hussl A, Mahlknecht P, Scherfler C et al. Diagnostic accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy from Parkinson’s disease and the Parkinson variant of multiple system atrophy. Mov Disord 2010; 25: 2444-2449
  • 3 Lillo P, Mioshi E, Burrell JR et al. Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS ONE 2012; 7: e43993
  • 4 Wenning GK, Colosimo C. Diagnostic criteria for multiple system atrophy and progressive supranuclear palsy. Rev Neurol 2010; 166: 829-833
  • 5 Arnone D, McIntosh AM, Ebmeier KP et al. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22: 1-16
  • 6 Haijma SV, Van Haren N, Cahn W et al. Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects. Schizophr Bull 2013; 39: 1129-1138
  • 7 Olabi B, Ellison-Wright I, McIntosh AM et al. Are There Progressive Brain Changes in Schizophrenia? A Meta-Analysis of Structural Magnetic Resonance Imaging Studies. Biol Psychiatry 2011; 70: 88-96
  • 8 Balcer LJ. Optic Neuritis. N Engl J Med 2006; 354: 1273-1280
  • 9 Diederich NJ, Stebbins G, Schiltz C et al. Are patients with Parkinson’s disease blind to blindsight?. Brain 2014;
  • 10 Cetin EN, Bir LS, Sarac G et al. Optic Disc and Retinal Nerve Fibre Layer Changes in Parkinson’s Disease. Neuro-Ophthalmol 2013; 37: 20-23
  • 11 He XF, Liu YT, Peng C et al. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int J Ophthalmol 2012; 5: 401-405
  • 12 Saidha S, Syc SB, Ibrahim MA et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134: 518-533
  • 13 Buckingham BP, Inman DM, Lambert W et al. Progressive Ganglion Cell Degeneration Precedes Neuronal Loss in a Mouse Model of Glaucoma. J Neurosci 2008; 28: 2735-2744
  • 14 Yücel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 2008; 173: 465-478
  • 15 Gupta N, Fong J, Ang LC et al. Retinal tau pathology in human glaucomas. Can J Ophthalmol 2008; 43: 53-60
  • 16 London A, Benhar I, Schwartz M. The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol 2012; 9: 44-53
  • 17 Blumenthal EZ, Parikh RS, Pe’er J et al. Retinal nerve fibre layer imaging compared with histological measurements in a human eye. Eye 2009; 23: 171-175
  • 18 Huang D, Swanson E, Lin C et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 19 Keane PA, Bhatti RA, Brubaker JW et al. Comparison of clinically relevant findings from high-speed fourier-domain and conventional time-domain optical coherence tomography. Am J Ophthalmol 2009; 148: 242-248.e1
  • 20 Holmes J. OCT technology development: where are we now? A commercial perspective. J Biophotonics 2009; 2: 347-352
  • 21 Olmedo JM, Warschaw KE, Schmitt JM et al. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: A pilot study. J Am Acad Dermatol 2006; 55: 408-412
  • 22 Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003; 21: 1361-1367
  • 23 Yonetsu T, Bouma BE, Kato K et al. Optical coherence tomography – 15 years in cardiology. Circ J 2013; 77: 1933-1940
  • 24 Gambichler T, Moussa G, Sand M et al. Applications of optical coherence tomography in dermatology. J Dermatol Sci 2005; 40: 85-94
  • 25 Testoni PA, Mangiavillano B. Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and bilio-pancreatic ductal system. World J Gastroenterol 2008; 14: 6444-6452
  • 26 Cauberg ECC, de Bruin DM, Faber DJ et al. A New Generation of Optical Diagnostics for Bladder Cancer: Technology, Diagnostic Accuracy, and Future Applications. Eur Urol 2009; 56: 287-297
  • 27 Albrecht P, Ringelstein M, Muller A et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult Scler J 2012; 18: 1422-1429
  • 28 Thalman LS, Bisker ER, Sackel DJ et al. Longitudinal study of vision and retinal nerve fiber layer thickness in MS. Ann Neurol 2010; 67: 749-760
  • 29 Gordon-Lipkin E, Chodkowski B, Reich DS et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007; 69: 1603-1609
  • 30 Grazioli E, Zivadinov R, Weinstock-Guttman B et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 2008; 268: 12-17
  • 31 Kirbas S, Turkyilmaz K, Anlar O et al. Retinal Nerve Fiber Layer Thickness in Patients With Alzheimer Disease. J Neuroophthalmol 2013; 33: 58-61
  • 32 Satue M, Garcia-Martin E, Fuertes I et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye 2013; 27: 507-514
  • 33 Fischer MD, Synofzik M, Kernstock C et al. Decreased retinal sensitivity and loss of retinal nerve fibers in multiple system atrophy. Graefes Arch Clin Exp Ophthalmol 2013; 251: 235-241
  • 34 Albrecht P, Müller A-K, Südmeyer M et al. Optical Coherence Tomography in Parkinsonian Syndromes. PLoS ONE 2012; 7: e34891
  • 35 Schneider M, Müller HP, Lauda F et al. Retinal single layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm 2014; 121: 41-47
  • 36 Lee WW, Tajunisah I, Sharmilla K et al. Retinal Nerve Fiber Layer Structure Abnormalities in Schizophrenia and Its Relationship to Disease State: Evidence From Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2013; 54: 7785-7792
  • 37 Ascaso FJ, Laura C, Quintanilla MÁ et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: A short report. Eur J Psychiatry 2010; 24: 227-235
  • 38 Cabezon L, Ascaso F, Ramiro P et al. Optical coherence tomography: a window into the brain of schizophrenic patients. Acta Ophthalmol 2012; 90 (Supplement s249): DOI: 10.1111/j1755-3768.2012.T123.x
  • 39 Chu EMY, Kolappan M, Barnes TRE et al. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res 2012; 203: 89-94
  • 40 Ward KE, Friedman L, Wise A et al. Meta-analysis of brain and cranial size in schizophrenia. Schizophr Res 1996; 22: 197-213
  • 41 Glahn DC, Laird AR, Ellison-Wright I et al. Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis. Biol Psychiatry 2008; 64: 774-781
  • 42 Van Haren NEM, Pol HEH, Schnack HG et al. Progressive Brain Volume Loss in Schizophrenia Over the Course of the Illness: Evidence of Maturational Abnormalities in Early Adulthood. Biol Psychiatry 2008; 63: 106-113
  • 43 Kim JS, Ishikawa H, Sung KR et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009; 93: 1057-1063
  • 44 Bora E, Fornito A, Pantelis C et al. Gray matter abnormalities in Major Depressive Disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 2012; 138: 9-18
  • 45 Kempton MJ. Structural Neuroimaging Studies in Major Depressive Disorder: Meta-analysis and Comparison With Bipolar Disorder. Arch Gen Psychiatry 2011; 68: 675
  • 46 Frodl TS, Koutsouleris N, Bottlender R et al. Depression-related variation in brain morphology over 3 years: effects of stress?. Arch Gen Psychiatry 2008; 65: 1156-1165
  • 47 Ownby RL, Crocco E, Acevedo A et al. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 2006; 63: 530-538
  • 48 Wuwongse S, Chang RCC, Law ACK. The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol 2010; 91: 362-375
  • 49 Kang HJ, Voleti B, Hajszan T et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18: 1413-1417
  • 50 Zawadzki RJ, Capps AG, Dae YuKim et al. Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts. J Sel Top Quantum Electron 2014; 20: 322-333