Horm Metab Res 2015; 47(07): 504-508
DOI: 10.1055/s-0034-1384587
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

A Double-Blind, Placebo-Controlled Trial Related to the Effects of Melatonin on Oxidative Stress and Inflammatory Parameters of Obese Women

N. Mesri Alamdari
1   Students Research Committee, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
R. Mahdavi
2   Nutrition Research Center, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
N. Roshanravan
1   Students Research Committee, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
N. Lotfi Yaghin
1   Students Research Committee, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
A. R. Ostadrahimi
2   Nutrition Research Center, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
E. Faramarzi
3   Common Disease Risk Factors Management Institute, Tabriz University of Medical Sciences, Tabriz, Iran
› Author Affiliations
Further Information

Publication History

received 15 April 2014

accepted 30 June 2014

Publication Date:
15 August 2014 (online)


Obesity, the global epidemic health problem, results in chronic disorders. Melatonin supplementation may prevent the adverse health consequences of obesity. The aim of this study was to assess the effects of melatonin supplementation on inflammatory and oxidative stress parameters in obese women. In randomized, double-blind, placebo-controlled trial, 44 obese women were randomly assigned to melatonin (n=22) and placebo (n=22) groups. Subjects were supplemented with a daily dose of 6 mg melatonin or placebo with low calorie diet for 40 days. Serum TNF-α, IL-6, hsCRP, TAC, and MDA levels were assessed before and after intervention. In the melatonin group, mean serum TNF-α, IL-6, hsCRP, and MDA levels decreased significantly (p<0.05) from 3.52±0.72 pg/ml, 27.12±6.32 pg/ml, 2.54±0.49 mg/l, and 3.81±0.29 nmol/l to 1.73±0.07, 16.34±6.32, 1.67±0.27, and 2.79±0.29, respectively. Whilst in the placebo group the decrease in values were not statistically significant. Mean TAC level increased slightly (from 1.11±0.30 to 1.14±0.45 mmol/l) in the melatonin group whereas it decreased slightly (from 1.13±0.15 to 1.08±0.21 nmol/l) in the placebo group. Significant differences were observed only for TNF-α (p=0.02) and IL-6 (p=0.03) between the 2 study groups. Considering the improvements in inflammatory and oxidative stress factors in obese women, it seems that melatonin supplementation may provide beneficial effects in obesity treatment by ameliorating some of its complications. However, further studies are needed to make concise conclusions.

  • References

  • 1 World health statistics [Internet]. WHO. 2012: 110-111 Available from http://www.who.int
  • 2 Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121: 2111-2118
  • 3 Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP. Visceral obesity the link among inflammation, hypertension, and cardiovascular disease. Hypertension 2009; 53: 577-584
  • 4 McTiernan A. Obesity and cancer: the risks, science, and potential management strategies. Oncology 2005; 19: 871-881
  • 5 Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005; 115: 911-919
  • 6 Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González Á, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. Inflammation, oxidative stress, and obesity. Int J Mol Sci 2011; 12: 3117-3132
  • 7 Beltowski J, Wojcicka G, Gorny D, Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 2000; 51: 883-896
  • 8 Wadden TA, Butryn ML, Wilson C. Lifestyle modification for the management of obesity. Gastroenterology 2007; 132: 2226-2238
  • 9 Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: results of a national survey. Obesity 2008; 16: 790-796
  • 10 Jiménez-Aranda A, Fernández-Vázquez G, Campos D, Tassi M, Velasco-Perez L, Tan DX, Reiter RJ, Agil A. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res 2013; 55: 416-423
  • 11 Tan DX, Manchester L, Fuentes-Broto L, Paredes S, Reiter R. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 2011; 12: 167-188
  • 12 Cipolla-Neto J, Amaral F, Afeche S, Tan D, Reiter R. Melatonin, energy metabolism, and obesity. J Pineal Res 2014; 56: 371-381
  • 13 Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52: 139-166
  • 14 Cardinali DP, Srinivasan V, Brzezinski A, Brown GM. Melatonin and its analogs in insomnia and depression. J Pineal Res 2012; 52: 365-375
  • 15 Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res 2013; 54: 245-257
  • 16 Calvo JR, González-Yanes C, Maldonado M. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 2013; 55: 103-120
  • 17 Hussein MR, Ahmed OG, Hassan AF, Ahmed MA. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. Int J Exp Pathol 2006; 88: 19-29
  • 18 Wolden-Hanson T, Mitton D, McCants R, Yellon S, Wilkinson C, Matsumoto A, Rasmussen D. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 2000; 141: 487-497
  • 19 Prunet-Marcassus B, Desbazeille M, Bros A, Louche K, Delagrange P, Renard P, Casteilla L, Pénicaud L. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 2003; 144: 5347-5352
  • 20 Puchalski SS, Green JN, Rasmussen DD. Melatonin effect on rat body weight regulation in response to high-fat diet at middle age. Endocrine 2003; 21: 163-167
  • 21 Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 2011; 50: 171-182
  • 22 Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54: 1-14
  • 23 Barlow-Walden L, Reiter R, Abe M, Pablos M, Menendez-Pelaez A, Chen L-D, Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 1995; 26: 497-502
  • 24 Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36: 1-9
  • 25 Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 2005; 39: 99-104
  • 26 Cuzzocrea S, Reiter RJ. Pharmacological actions of melatonin in acute and chronic inflammation. Curr Top Med Chem 2002; 2: 153-165
  • 27 Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmaco 2010; 80: 1844-1852
  • 28 Reiter RJ, Tan D, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 2002; 123: 1007-1019
  • 29 Rasmussen DD, Boldt BM, Wilkinson C, Yellon SM, Matsumoto AM. Daily melatonin administration at middle age suppresses male rate visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology 1999; 140: 1009-1012
  • 30 She M, Deng X, Guo Z, Laudon M, Hu Z, Liao D, Hu X, Luo Y, Shen Q, Su Z. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacol Res 2009; 59: 248-253
  • 31 Kędziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, Bartosz G, Kędziora J. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res 2009; 46: 333-337
  • 32 Koziróg M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res 2011; 50: 261-266
  • 33 Reiter RJ, Paredes SD, Manchester LC, Tan D-X. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44: 175-200
  • 34 Kędziora-Kornatowska K, Szewczyk-Golec K, Czuczejko J, Pawluk H, Van Marke de Lumen K, Kozakiewicz M, Bartosz G, Kędziora J. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J Pineal Res 2008; 45: 312-317
  • 35 Tan D-X, Chen L, Poeggeler B, Manchester L, Reiter R. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1993; 1: 57-60
  • 36 Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 2010; 48: 239-250
  • 37 Veneroso C, Tuñón MJ, González-Gallego J, Collado PS. Melatonin reduces cardiac inflammatory injury induced by acute exercise. J Pineal Res 2009; 47: 184-191
  • 38 Cichoz-Lach H, Celinski K, Konturek P, Konturek S, Slomka M. The effects of l-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis. J Physiol Pharmacol 2010; 61: 577-580