Klin Monbl Augenheilkd 2015; 232(2): 141-146
DOI: 10.1055/s-0034-1383398
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Der okuläre Perfusionsdruck und seine Bedeutung für das Glaukom

Ocular Perfusion Pressure and its Relevance for Glaucoma
D. Schmidl
1   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
,
R. Werkmeister
2   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien, Österreich
,
G. Garhöfer
1   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
,
L. Schmetterer
1   Universitätsklinik für Klinische Pharmakologie, Medizinische Universität Wien, Österreich
2   Zentrum für Medizinische Physik und Biomedizinische Technik, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht 17 October 2014

akzeptiert 24 October 2014

Publication Date:
20 February 2015 (online)

Zusammenfassung

Der okuläre Perfusionsdruck ist definiert als die Differenz zwischen arteriellem und venösem Druck in den Gefäßen des Auges. In der Praxis wird der arterielle Druck in den okulären Gefäßen durch den arteriellen systemischen Blutdruck, der venöse Druck in den okulären Gefäßen durch den Intraokulardruck abgeschätzt. Damit ergibt sich ein einfach zu berechnender Wert, der insofern von Bedeutung ist, da eine Reihe von Studien gezeigt hat, dass er mit der Prävalenz, der Inzidenz und der Progression des primären Offenwinkelglaukoms verknüpft ist. Heute wird der okuläre Perfusionsdruck vor allem zur Risikoabschätzung bestimmt. Eine direkte therapeutische Intervention ist schwierig, da kein Zielwert für den okulären Perfusionsdruck festgelegt werden kann. Es ist jedoch zu bedenken, dass jede Senkung des Augeninnendrucks auch zu einer Erhöhung des Perfusionsdrucks führt. Im vorliegenden Artikel werden die Probleme und Limitierungen im Konzept des okulären Perfusionsdrucks diskutiert und mögliche Auswege für die Zukunft aufgezeigt.

Abstract

Ocular perfusion pressure is defined as the difference between arterial and venous pressure in ocular vessels. In practice, mean arterial pressure is used to substitute for arterial pressure in ocular vessels while intraocular pressure gives an estimate for ocular venous pressure. This results in a value that is easy to calculate and which is of importance since several studies have shown that it is correlated to the prevalence, incidence and progression of primary open angle glaucoma. Today, ocular perfusion pressure is used to estimate individual risks. Since no target value for ocular perfusion pressure can be defined, direct therapeutic intervention is difficult. Still, it has to be kept in mind that lowering intraocular pressure automatically leads to an increase in ocular perfusion pressure. The present article also points out problems and limitations in the concept of ocular perfusion pressure and suggests possible solutions for these problems in the future.

 
  • Literatur

  • 1 Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 2009; 20: 73-78
  • 2 He Z, Vingrys AJ, Armitage JA et al. The role of blood pressure in glaucoma. Clin Exp Optom 2011; 94: 133-149
  • 3 Costa VP, Harris A, Anderson D et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol 2014; 92: e252-e266
  • 4 Harris A, Kagemann L, Cioffi GA. Assessment of human ocular hemodynamics. Surv Ophthalmol 1998; 42: 509-533
  • 5 Glucksberg MR, Dunn R. Direct measurement of retinal microvascular pressures in the live, anesthetized cat. Microvasc Res 1993; 45: 158-165
  • 6 Maepea O. Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp Eye Res 1992; 54: 731-736
  • 7 Ramdas WD, Wolfs RC, Hofman A et al. Ocular perfusion pressure and the incidence of glaucoma: real effect or artifact? The Rotterdam Study. Invest Ophthalmol Vis Sci 2011; 52: 6875-6881
  • 8 Tielsch JM, Katz J, Sommer A et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 1995; 113: 216-221
  • 9 Bonomi L, Marchini G, Marraffa M et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 2000; 107: 1287-1293
  • 10 Quigley HA, West SK, Rodriguez J et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119: 1819-1826
  • 11 Memarzadeh F, Ying-Lai M, Chung J et al. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 2010; 51: 2872-2877
  • 12 Leske MC, Wu SY, Hennis A et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008; 115: 85-93
  • 13 Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 1965-1972
  • 14 Sung KR, Lee S, Park SB et al. Twenty-four hour ocular perfusion pressure fluctuation and risk of normal-tension glaucoma progression. Invest Ophthalmol Vis Sci 2009; 50: 5266-5274
  • 15 Sung KR, Cho JW, Lee S et al. Characteristics of visual field progression in medically treated normal-tension glaucoma patients with unstable ocular perfusion pressure. Invest Ophthalmol Vis Sci 2011; 52: 737-743
  • 16 Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 2001; 20: 319-349
  • 17 Flammer J, Mozaffarieh M. Autoregulation, a balancing act between supply and demand. Can J Ophthalmol 2008; 43: 317-321
  • 18 Osborne NN, Casson RJ, Wood JP et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004; 23: 91-147
  • 19 Kaiser HJ, Flammer J, Graf T et al. Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 1993; 231: 677-680
  • 20 Graham SL, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 1999; 43 (Suppl. 01) S10-S16
  • 21 Tokunaga T, Kashiwagi K, Tsumura T et al. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol 2004; 48: 380-385
  • 22 Choi J, Kim KH, Jeong J et al. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci 2007; 48: 104-111
  • 23 Hayreh SS, Zimmerman MB, Podhajsky P et al. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 1994; 117: 603-624
  • 24 Krasinska B, Karolczak-Kulesza M, Krasinski Z et al. A marked fall in nocturnal blood pressure is associated with the stage of primary open-angle glaucoma in patients with arterial hypertension. Blood Press 2011; 20: 171-181
  • 25 Topouzis F, Coleman AL, Harris A et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol 2006; 142: 60-67
  • 26 Topouzis F, Wilson MR, Harris A et al. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol 2013; 155: 843-851
  • 27 Konstas AG, Papapanos P, Tersis I et al. Twenty-four-hour diurnal curve comparison of commercially available latanoprost 0.005 % versus the timolol and dorzolamide fixed combination. Ophthalmology 2003; 110: 1357-1360
  • 28 Konstas AG, Pikilidou MI, Tsironi S et al. 24-hour intraocular pressure and blood pressure levels with latanoprost/timolol fixed combination versus timolol. Curr Eye Res 2009; 34: 369-377
  • 29 Konstas AG, Quaranta L, Katsanos A et al. Twenty-four hour efficacy with preservative free tafluprost compared with latanoprost in patients with primary open angle glaucoma or ocular hypertension. Br J Ophthalmol 2013; 97: 1510-1515
  • 30 Konstas AG, Hollo G, Haidich AB et al. Comparison of 24-hour intraocular pressure reduction obtained with brinzolamide/timolol or brimonidine/timolol fixed-combination adjunctive to travoprost therapy. J Ocul Pharmacol Ther 2013; 29: 652-657
  • 31 Mozaffarieh M, Fraenkl S, Konieczka K et al. Targeted preventive measures and advanced approaches in personalised treatment of glaucoma neuropathy. EPMA J 2010; 1: 229-235
  • 32 Orgul S, Zawinka C, Gugleta K et al. Therapeutic strategies for normal-tension glaucoma. Ophthalmologica 2005; 219: 317-323
  • 33 Araie M, Mayama C. Use of calcium channel blockers for glaucoma. Prog Retin Eye Res 2011; 30: 54-71
  • 34 Muskens RP, de Voogd S, Wolfs RC et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology 2007; 114: 2221-2226
  • 35 Dallinger S, Bobr B, Findl O et al. Effects of acetazolamide on choroidal blood flow. Stroke 1998; 29: 997-1001
  • 36 Kiss B, Dallinger S, Findl O et al. Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide. Am J Physiol 1999; 276: R1661-1667
  • 37 Fuchsjäger-Mayrl G, Wally B, Rainer G et al. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol 2005; 89: 1293-1297
  • 38 Januleviciene I, Harris A, Kagemann L et al. A comparison of the effects of dorzolamide/timolol fixed combination versus latanoprost on intraocular pressure and pulsatile ocular blood flow in primary open-angle glaucoma patients. Acta Ophthalmol Scand 2004; 82: 730-737
  • 39 Fuchsjäger-Mayrl G, Georgopoulos M, Hommer A et al. Effect of dorzolamide and timolol on ocular pressure – blood flow relationship in patients with primary open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2010; 51: 1289-1296
  • 40 Martinez A, Sanchez-Salorio M. Predictors for visual field progression and the effects of treatment with dorzolamide 2 % or brinzolamide 1 % each added to timolol 0.5 % in primary open-angle glaucoma. Acta Ophthalmol 2010; 88: 541-552
  • 41 Rosenthal R, Fromm M. Endothelin antagonism as an active principle for glaucoma therapy. Br J Pharmacol 2011; 162: 806-816
  • 42 Prasanna G, Narayan S, Krishnamoorthy RR et al. Eyeing endothelins: a cellular perspective. Mol Cell Biochem 2003; 253: 71-88
  • 43 Resch H, Karl K, Weigert G et al. Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects. Invest Ophthalmol Vis Sci 2009; 50: 358-363
  • 44 Lee YH, Song GG. Meta-analysis of randomized controlled trials of bosentan for treatment of pulmonary arterial hypertension. Korean J Intern Med 2013; 28: 701-707
  • 45 Cherecheanu AP, Garhöfer G, Schmidl D et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 2013; 13: 36-42
  • 46 Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res 2011; 93: 120-132
  • 47 Osborne NN. Mitochondria: Their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 2010; 90: 750-757
  • 48 Morgan WH, Hazelton ML, Azar SL et al. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 2004; 111: 1489-1494
  • 49 Reitsamer HA, Kiel JW. A rabbit model to study orbital venous pressure, intraocular pressure, and ocular hemodynamics simultaneously. Invest Ophthalmol Vis Sci 2002; 43: 3728-3734
  • 50 Weigelin E, Lobstein MA. Ophthalmodynamometrie. Basel, New York: Kager S; 1962
  • 51 Ulrich WD. Grundlagen und Methodik der Ophthalmodynamometrie (ODM), Ophthalmodynamographie (ODG), Temporalisdynamographie (TDG). Stuttgart: G. Thieme; 1976
  • 52 Stodtmeister R, Oppitz T, Spoerl E et al. Contact lens dynamometry: the influence of age. Invest Ophthalmol Vis Sci 2010; 51: 6620-6624
  • 53 Low B. [Contact glass dynamometry]. Klin Monatsbl Augenheilkd 1997; 210: 131
  • 54 Liu JH, Bouligny RP, Kripke DF et al. Nocturnal elevation of intraocular pressure is detectable in the sitting position. Invest Ophthalmol Vis Sci 2003; 44: 4439-4442
  • 55 Khawaja AP, Crabb DP, Jansonius NM. The role of ocular perfusion pressure in glaucoma cannot be studied with multivariable regression analysis applied to surrogates. Invest Ophthalmol Vis Sci 2013; 54: 4619-4620
  • 56 Schmidl D, Garhöfer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow – relevance for glaucoma. Exp Eye Res 2011; 93: 141-155
  • 57 Polska E, Simader C, Weigert G et al. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci 2007; 48: 3768-3774
  • 58 Boltz A, Schmidl D, Werkmeister RM et al. Regulation of optic nerve head blood flow during combined changes in intraocular pressure and arterial blood pressure. J Cereb Blood Flow Metab 2013; 33: 1850-1856
  • 59 Kiel JW, Shepherd AP. Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 1992; 33: 2399-2410
  • 60 Tani T, Nagaoka T, Nakabayashi S et al. Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: comparison of the effects of increased intraocular pressure and systemic hypotension. Invest Ophthalmol Vis Sci 2014; 55: 360-367
  • 61 Wang L, Cull GA, Fortune B. Optic Nerve Head Blood Flow Response to Reduced Ocular Perfusion Pressure by Alteration of Either the Blood Pressure or Intraocular Pressure. Curr Eye Res 2014; 1-9 [Epub ahead of print]
  • 62 Evans DW, Harris A, Garrett M et al. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol 1999; 83: 809-813
  • 63 Fuchsjäger-Mayrl G, Wally B, Georgopoulos M et al. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 2004; 45: 834-839
  • 64 Feke GT, Pasquale LR. Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 2008; 115: 246-252
  • 65 Geiser MH, Riva CE, Dorner GT et al. Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 2000; 21: 669-676
  • 66 Luksch A, Garhöfer G, Imhof A et al. Effect of inhalation of different mixtures of O(2) and CO(2) on retinal blood flow. Br J Ophthalmol 2002; 86: 1143-1147
  • 67 Haefliger IO, Meyer P, Flammer J et al. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology?. Surv Ophthalmol 1994; 39: 123-132
  • 68 Schmetterer L, Polak K. Role of nitric oxide in the control of ocular blood flow. Prog Retin Eye Res 2001; 20: 823-847
  • 69 Emre M, Orgul S, Haufschild T et al. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 2005; 89: 60-63
  • 70 Henry E, Newby DE, Webb DJ et al. Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 2528-2532
  • 71 Polak K, Luksch A, Berisha F et al. Altered nitric oxide system in patients with open-angle glaucoma. Arch Ophthalmol 2007; 125: 494-498
  • 72 Henry E, Newby DE, Webb DJ et al. Peripheral endothelial dysfunction in normal pressure glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 1710-1714
  • 73 Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 74 Resch H, Garhöfer G, Fuchsjäger-Mayrl G et al. Endothelial dysfunction in glaucoma. Acta Ophthalmol 2009; 87: 4-12
  • 75 Buckley C, Hadoke PW, Henry E et al. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol 2002; 86: 227-232
  • 76 Riva CE, Logean E, Falsini B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 2005; 24: 183-215
  • 77 Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31: 377-406
  • 78 Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 2013; 33: 1685-1695
  • 79 Bai Y, Shi Z, Zhuo Y et al. In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci 2010; 51: 6639-6651
  • 80 Garhöfer G, Zawinka C, Resch H et al. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma 2004; 13: 340-344
  • 81 Gugleta K, Waldmann N, Polunina A et al. Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1577-1585
  • 82 Stalmans I, Vandewalle E, Anderson DR et al. Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol 2011; 89: e609-e630
  • 83 Riva CE, Geiser M, Petrig BL et al. Ocular blood flow assessment using continuous laser Doppler flowmetry. Acta Ophthalmol 2010; 88: 622-629
  • 84 Sugiyama T, Araie M, Riva CE et al. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 2010; 88: 723-729
  • 85 Leitgeb RA, Werkmeister RM, Blatter C et al. Doppler optical coherence tomography. Prog Retin Eye Res 2014; 41: 26-43
  • 86 Blatter C, Klein T, Grajciar B et al. Ultrahigh-speed non-invasive widefield angiography. J Biomed Opt 2012; 17: 070505
  • 87 Yasuno Y, Hong Y, Makita S et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express 2007; 15: 6121-6139
  • 88 Jia Y, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012; 20: 4710-4725
  • 89 Choi W, Mohler KJ, Potsaid B et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One 2013; 8: e81499
  • 90 Jia Y, Wei E, Wang X et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121: 1322-1332
  • 91 Wang Y, Bower BA, Izatt JA et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 2007; 12: 041215
  • 92 Baumann B, Potsaid B, Kraus MF et al. Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT. Biomed Opt Express 2011; 2: 1539-1552
  • 93 Doblhoff-Dier V, Schmetterer L, Vilser W et al. Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes. Biomed Opt Express 2014; 5: 630-642
  • 94 Sehi M, Goharian I, Konduru R et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology 2014; 121: 750-758
  • 95 Hardarson SH, Harris A, Karlsson RA et al. Automatic retinal oximetry. Invest Ophthalmol Vis Sci 2006; 47: 5011-5016
  • 96 Hammer M, Vilser W, Riemer T et al. Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 2008; 13: 054015
  • 97 Olafsdottir OB, Hardarson SH, Gottfredsdottir MS et al. Retinal oximetry in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 6409-6413
  • 98 Vandewalle E, Abegao Pinto L, Olafsdottir OB et al. Oximetry in glaucoma: correlation of metabolic change with structural and functional damage. Acta Ophthalmol 2014; 92: 105-110
  • 99 Wanek J, Teng PY, Blair NP et al. Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat. Invest Ophthalmol Vis Sci 2013; 54: 5012-5019
  • 100 Palkovits S, Told R, Schmidl D et al. Regulation of retinal oxygen metabolism in humans during graded hypoxia. Am J Physiol Heart Circ Physiol 2014; 307: H1412-H1418
  • 101 Palkovits S, Lasta M, Told R et al. Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects. Invest Ophthalmol Vis Sci 2014; 55: 4707-4713