Planta Med 2015; 81(06): 517-524
DOI: 10.1055/s-0034-1383261
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Alkaloids from Psychotria Target Sirtuins: In Silico and In Vitro Interaction Studies

Lionel Sacconnay*
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
,
Lucie Ryckewaert*
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
,
Carolina dos Santos Passos
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
,
Maria Cristina Guerra
2   Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
,
Lucilia Kato
3   Laboratório de Bioatividade Molecular, Instituto de Química, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
,
Cecilia Maria Alves de Oliveira
3   Laboratório de Bioatividade Molecular, Instituto de Química, Universidade Federal de Goiás, UFG, Goiânia, GO, Brazil
,
Amélia Henriques
4   Laboratório Farmacognosia, Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
,
Pierre-Alain Carrupt
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
,
Claudia Simões-Pires
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
,
Alessandra Nurisso
1   School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
› Author Affiliations
Further Information

Publication History

received 08 July 2014
revised 23 September 2014

accepted 06 October 2014

Publication Date:
03 December 2014 (online)

Abstract

Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins. Given the multifunctional profile of these alkaloids in the central nervous system, and the fact that the indole scaffold has been previously associated with sirtuin inhibition, we hypothesized that these indole derivatives could also interact with sirtuins. In the present study, alkaloids previously isolated from Psychotria spp. were evaluated for their potential interaction with human sirtuin 1 and sirtuin 2 by molecular docking and molecular dynamics simulation approaches. The in silico results allowed for the selection of five potentially active compounds, namely, prunifoleine, 14-oxoprunifoleine, E-vallesiachotamine, Z-vallesiachotamine, and vallesiachotamine lactone. The sirtuin inhibition of these compounds was confirmed in vitro in a dose-response manner, with preliminary information on their pharmacokinetics properties.

* These authors contributed equally to the work.


Supporting Information

 
  • References

  • 1 Huber K, Superti-Furga G. After the grape rush: sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorg Med Chem 2011; 19: 3616-3624
  • 2 Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem 2005; 38: 105-127
  • 3 Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997; 77: 1081-1132
  • 4 Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113: 1456-1464
  • 5 Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM. Nicotinamide restores cognition in Alzheimerʼs disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008; 28: 11500-11510
  • 6 Li Y, Xu W, McBurney MW, Longo VD. SIRT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 2008; 8: 38-48
  • 7 Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, Chopra V, Hersch SM, Kazantsev AG. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 2011; 20: 3986-3996
  • 8 Dillin A, Kelly JW. The yin-yang of sirtuins. Science 2007; 317: 461-462
  • 9 Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013; 5: 344-352
  • 10 Nurisso A, Simoes-Pires C, Martel S, Cressend D, Guillot A, Carrupt PA. How to increase the safety and efficacy of compounds against neurodegeneration? A multifunctional approach. Chimia 2012; 66: 286-290
  • 11 Novaroli L, Daina A, Bertolini F, Di Giovanni S, Bravo J, Reist M, Carrupt PA. Identification of novel multifunctional compounds for the treatment of some aging related neurodegenerative diseases. Chimia 2005; 59: 315-320
  • 12 Farias FM, Passos CS, Arbo MD, Barros DM, Gottfried C, Steffen VM, Henriques AT. Strictosidinic acid, isolated from Psychotria myriantha Mull. Arg. (Rubiaceae), decreases serotonin levels in rat hippocampus. Fitoterapia 2012; 83: 1138-1143
  • 13 Dos Santos Passos C, Soldi TC, Torres Abib R, Anders Apel M, Simões-Pires C, Marcourt L, Gottfried C, Henriques AT. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata . J Enzyme Inhib Med Chem 2013; 28: 611-618
  • 14 Passos CS, Simões-Pires CA, Nurisso A, Soldi TC, Kato L, de Oliveira CM, de Faria EO, Marcourt L, Gottfried C, Carrupt PA, Henriques AT. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors. Phytochemistry 2013; 86: 8-20
  • 15 Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, Yau WT, Amouzegh P, Flegg A, Hamelin E, Thomas RJ, Kates M, Jones S, Navia MA, Saunders JO, DiStefano PS, Curtis R. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 2005; 48: 8045-8054
  • 16 Sacconnay L, Angleviel M, Randazzo GM, Marcal Ferreira Queiroz M, Ferreira Queiroz E, Wolfender JL, Carrupt PA, Nurisso A. Computational studies on sirtuins from Trypanosoma cruzi: structures, conformations and interactions with phytochemicals. PLoS Negl Trop Dis 2014; 8: e2689
  • 17 Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Evol Biol 2013; 13: 60
  • 18 Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006; 34: W116-W118
  • 19 Zhao X, Allison D, Condon B, Zhang F, Gheyi T, Zhang A, Ashok S, Russell M, MacEwan I, Qian Y, Jamison JA, Luz JG. The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem 2013; 56: 963-969
  • 20 Moniot S, Schutkowski M, Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol 2013; 182: 136-143
  • 21 Ryckewaert L, Sacconnay L, Carrupt PA, Nurisso A, Simões-Pires CA. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols. Toxicol Lett 2014; 229: 374-380
  • 22 Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun 2002; 70: 5635-5646
  • 23 Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008; 51: 347-372
  • 24 Efferth T, Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 2011; 12: 122-132
  • 25 Geldenhuys WJ, Youdim MB, Carroll RT, Van der Schyf CJ. The emergence of designed multiple ligands for neurodegenerative disorders. Prog Neurobiol 2011; 94: 347-359
  • 26 Soares PR, de Oliveira PL, de Oliveira CM, Kato L, Guillo LA. In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells. Arch Pharm Res 2012; 35: 565-571
  • 27 Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. Amber 12. San Francisco: University of California; 2012
  • 28 Gerber PR, Muller K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J Comput Aided Mol Des 1995; 9: 251-268
  • 29 Labute P. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009; 75: 187-205
  • 30 Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006; 65: 712-725
  • 31 Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174
  • 32 Aaqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 1990; 94: 8021-8024
  • 33 Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089-10092
  • 34 Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341
  • 35 Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004; 35: 383-394
  • 36 Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin M G, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. Amber 11. San Francisco: University of California; 2010
  • 37 Faria EO, Kato L, de Oliveira CMA, Carvalho BG, Silva CC, Sales LS, Schuquel ITA, Silveira-Lacerda EP, Delprete PG. Quaternary β-carboline alkaloids from Psychotria prunifolia (Kunth) Steyerm. Phytochem Lett 2010; 3: 113-116
  • 38 Gottfried C, Cechin SR, Gonzalez MA, Vaccaro TS, Rodnight R. The influence of the extracellular matrix on the morphology and intracellular pH of cultured astrocytes exposed to media lacking bicarbonate. Neuroscience 2003; 121: 553-562
  • 39 Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Gonçalves CA, Gottfried C. The janus face of resveratrol in astroglial cells. Neurotox Res 2009; 16: 30-41