Planta Med 2014; 80(14): 1182-1199
DOI: 10.1055/s-0034-1383061
Reviews
Georg Thieme Verlag KG Stuttgart · New York

How to Translate a Bioassay Into a Screening Assay for Natural Products: General Considerations and Implementation of Antimicrobial Screens

Adyary Fallarero
Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
,
Leena Hanski
Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
,
Pia Vuorela
Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
› Author Affiliations
Further Information

Publication History

received 15 July 2014
revised 27 August 2014

accepted 27 August 2014

Publication Date:
15 September 2014 (online)

Abstract

Natural product sources have been a valuable provider of molecular diversity in many drug discovery programs and several therapeutically important drugs have been isolated from these. However, the screening of such materials can be very complicated due to the fact that they contain a complex mixture of secondary metabolites, but also the purified natural compounds exert a challenge for bioactivity screening. Success in identifying new therapeutics using in vitro bioassays is largely dependent upon the proper design, validation, and implementation of the screening assay. In this review, we discuss some aspects which are of significant concern when screening natural products in a microtiter plate-based format, being partly applicable to other assay formats as well, such as validation parameters, layouts for assay protocols, and common interferences caused by natural products samples, as well as various troubleshooting strategies. Examples from the field of natural product drug discovery of antibacterial compounds are discussed, and contributions from the realm of academic screenings are highlighted.

 
  • References

  • 1 Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen 2008; 13: 443-448
  • 2 Wölcke J, Ullmann D. Miniaturized HTS technologies – uHTS. Drug Discov Today 2001; 6: 637-646
  • 3 Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 2013; 18: 495-501
  • 4 Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830: 3670-3695
  • 5 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
  • 6 Potterat O, Hamburger M. Natural products in drug discovery – concepts and approaches for tracking bioactivity. Curr Organ Chem 2006; 10: 899-920
  • 7 Macarrón R, Hertzberg RP. Design and implementation of high-throughput screening assays. Methods Mol Biol 2009; 565: 1-32
  • 8 Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4: 206-220
  • 9 Riihimäki-Lampén LH, Vainio MJ, Vahermo M, Pohjala LL, Heikura JM, Valkonen KH, Virtanen VT, Yli-Kauhaluoma JT, Vuorela PM. The binding of synthetic retinoids to lipocalin beta-lactoglobulins. J Med Chem 2010; 53: 514-518
  • 10 Hasson SA, Inglese J. Innovation in academic chemical screening: filling the gaps in chemical biology. Curr Opin Chem Biol 2013; 17: 329-338
  • 11 Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W, Austin CP, Auld DS. High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3: 466-479
  • 12 Coma I, Herranz J, Martin J. Statistics and decision making in high-throughput screening. Methods Mol Biol 2009; 565: 69-106
  • 13 Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 2011; 10: 188-195
  • 14 Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2014; 17: 210-230
  • 15 Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008; 3: 435-444
  • 16 Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, Bray MA, Thiollier C, Diebold L, Gilles L, Vokes MS, Moore CB, Bliss-Moreau M, Verplank L, Tolliday NJ, Mishra R, Vemula S, Shi J, Wei L, Kapur R, Lopez CK, Gerby B, Ballerini P, Pflumio F, Gilliland DG, Goldberg L, Birger Y, Izraeli S, Gamis AS, Smith FO, Woods WG, Taub J, Scherer CA, Bradner JE, Goh BC, Mercher T, Carpenter AE, Gould RJ, Clemons PA, Carr SA, Root DE, Schreiber SL, Stern AM, Crispino JD. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012; 150: 575-589
  • 17 Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, Macdonald D, Moore WJ, Neves C, Patterson A, Porter M, Tarkowska A, Loranger B, Avondo J, Lagerstedt I, Lianas L, Leo S, Hands K, Hay RT, Patwardhan A, Best C, Kleywegt GJ, Zanetti G, Swedlow JR. OMERO: flexible, model-driven data management for experimental biology. Nat Methods 2012; 9: 245-253
  • 18 Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Johnston PA, Shun TY, Lazo JS, Perlmutter DH, Silverman GA, Pak SC. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 2010; 5: e15460
  • 19 Coma I, Clark L, Diez E, Harper G, Herranz J, Hofmann G, Lennon M, Richmond N, Valmaseda M, Macarron R. Process validation and screen reproducibility in high-throughput screening. J Biomol Screen 2009; 14: 66-76
  • 20 Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999; 4: 67-73
  • 21 Bollini S, Herbst JJ, Gaughan GT, Verdoorn TA, Ditta J, Dubowchik GM, Vinitsky A. High-throughput fluorescence polarization method for identification of FKBP12 ligands. J Biomol Screen 2002; 7: 526-530
  • 22 Iversen PW, Eastwood BJ, Sittampalam GS, Cox KL. A comparison of assay performance measures in screening assays: signal window, Z′ factor, and assay variability ratio. J Biomol Screen 2006; 11: 247-252
  • 23 Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M. High-throughput screening: update on practices and success. J Biomol Screen 2006; 11: 864-869
  • 24 Soikkeli A, Sempio C, Kaukonen AM, Urtti A, Hirvonen J, Yliperttula M. Feasibility evaluation of 3 automated cellular drug screening assays on a robotic workstation. J Biomol Screen 2010; 15: 30-41
  • 25 Hurst WJ, Mortimer JW. Laboratory robotics, a guide to planning, programming and applications. Birmingham, England: VCH Publishers, Inc.; 1987
  • 26 Taylor PB, Ashman S, Baddeley SM, Bartram SL, Battle CD, Bond BC, Clements YM, Gaul NJ, McAllister WE, Mostacero JA, Ramon F, Wilson JM, Hertzberg RP, Pope AJ, Macarron R. A standard operating procedure for assessing liquid handler performance in high-throughput screening. J Biomol Screen 2002; 7: 554-569
  • 27 Berg M, Undisz K, Thiericke R, Zimmermann P, Moore T, Posten C. Evaluation of liquid handling conditions in microplates. J Biomol Screen 2001; 6: 47-56
  • 28 Sandberg M, Määttänen A, Peltonen J, Vuorela PM, Fallarero A. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds. Int J Antimicrob Agents 2008; 32: 233-240
  • 29 Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, Shoichet BK, Austin CP. A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 2007; 50: 2385-2390
  • 30 McGovern SL, Caselli E, Grigorieff N, Shoichet BK. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 2002; 45: 1712-1722
  • 31 McGovern SL, Shoichet BK. Kinase inhibitors: not just for kinases anymore. J Med Chem 2003; 46: 1478-1483
  • 32 Coan KE, Maltby DA, Burlingame AL, Shoichet BK. Promiscuous aggregate-based inhibitors promote enzyme unfolding. J Med Chem 2009; 52: 2067-2075
  • 33 Coan KE, Shoichet BK. Stoichiometry and physical chemistry of promiscuous aggregate-based inhibitors. J Am Chem Soc 2008; 130: 9606-9612
  • 34 Feng BY, Shoichet BK. A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc 2006; 1: 550-553
  • 35 Han R. Highlight on the studies of anticancer drugs derived from plants in China. Stem Cells 1994; 12: 53-63
  • 36 Han R. Recent progress in the study of anticancer drugs originating from plants and traditional medicines in China. Chin Med Sci J 1994; 9: 61-69
  • 37 Clements RT, Cordeiro B, Feng J, Bianchi C, Sellke FW. Rottlerin increases cardiac contractile performance and coronary perfusion through BKCa++ channel activation after cold cardioplegic arrest in isolated hearts. Circulation 2011; 124: S55-S61
  • 38 Sassano MF, Doak AK, Roth BL, Shoichet BK. Colloidal aggregation causes inhibition of G protein-coupled receptors. J Med Chem 2013; 56: 2406-2414
  • 39 Giannetti AM, Koch BD, Browner MF. Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem 2008; 51: 574-580
  • 40 Pohjala L, Tammela P. Aggregating behavior of phenolic compounds – a source of false bioassay results?. Molecules 2012; 17: 10774-10790
  • 41 Ryan AJ, Gray NM, Lowe PN, Chung CW. Effect of detergent on “promiscuous” inhibitors. J Med Chem 2003; 46: 3448-3451
  • 42 Pohjala LL, Sairio NK, Vuorela PM. Interference by bovine serum albumin in PED6 based phospholipase A2 screening assays. Pharmazie 2012; 67: 954-955
  • 43 Chan LL, Lidstone EA, Finch KE, Heeres JT, Hergenrother PJ, Cunningham BT. A method for identifying small-molecule aggregators using photonic crystal biosensor microplates. JALA Charlottesv Va 2009; 14: 348-359
  • 44 Seidler J, McGovern SL, Doman TN, Shoichet BK. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 2003; 46: 4477-4486
  • 45 Gao H, Shanmugasundaram V, Lee P. Estimation of aqueous solubility of organic compounds with QSPR approach. Pharm Res 2002; 19: 497-503
  • 46 Larsson J, Gottfries J, Muresan S, Backlund A. ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 2007; 70: 789-794
  • 47 Rosén J, Lövgren A, Kogej T, Muresan S, Gottfries J, Backlund A. ChemGPS-NP(Web): chemical space navigation online. J Comput Aided Mol Des 2009; 23: 253-259
  • 48 Schneider R, Gohla A, Simard JR, Yadav DB, Fang Z, van Otterlo WA, Rauh D. Overcoming compound fluorescence in the FLiK screening assay with red-shifted fluorophores. J Am Chem Soc 2013; 135: 8400-8408
  • 49 Kraus B, Ziegler M, Wolff H. Linear fluorescence unmixing in cell biological research. In: Méndez-Vilas A, Díaz J, editors. Modern research and educational topics in microscopy. Volume 2. Badajoz, Spain: Formatex; 2007: 863-872 Available online: http://www.formatex.org/microscopy3/
  • 50 Shapiro AB, Walkup GK, Keating TA. Correction for interference by test samples in high-throughput assays. J Biomol Screen 2009; 14: 1008-1016
  • 51 Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, Thomas CJ, Maloney DJ, Shoichet BK, Simeonov A. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem 2010; 53: 37-51
  • 52 Narwal M, Fallarero A, Vuorela P, Lehtiö L. Homogeneous screening assay for human tankyrase. J Biomol Screen 2012; 17: 593-604
  • 53 Ryuk JA, Zheng MS, Lee MY, Seo CS, Li Y, Lee SH, Moon DC, Lee HW, Lee JH, Park JY, Son JK, Ko BS. Discrimination of Phellodendron amurense and P. chinense based on DNA analysis and the simultaneous analysis of alkaloids. Arch Pharm Res 2012; 35: 1045-1054
  • 54 Grant SK, Sklar JG, Cummings RT. Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. J Biomol Screen 2002; 7: 531-540
  • 55 Turek-Etienne TC, Lei M, Terracciano JS, Langsdorf EF, Bryant RW, Hart RF, Horan AC. Use of red-shifted dyes in a fluorescence polarization AKT kinase assay for detection of biological activity in natural product extracts. J Biomol Screen 2004; 9: 52-61
  • 56 Shiau AK, Massari ME, Ozbal CC. Back to basics: label-free technologies for small molecule screening. Comb Chem High Throughput Screen 2008; 11: 231-237
  • 57 Fang Y. Label-free drug discovery. Front Pharmacol 2014; 5: 52
  • 58 George S, Bhalerao SV, Lidstone EA, Ahmad IS, Abbasi A, Cunningham BT, Watkin KL. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells. BMC Complement Altern Med 2010; 10: 52
  • 59 Chan LL, Gosangari SL, Watkin KL, Cunningham BT. Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library. Sens Actuators B Chem 2008; 132: 418-425
  • 60 Chan LL, George S, Ahmad I, Gosangari SL, Abbasi A, Cunningham BT, Watkin KL. Cytotoxicity effects of Amoora rohituka and chittagonga on breast and pancreatic cancer cells. Evid Based Complement Alternat Med 2011; 2011: 860605
  • 61 Kling B, Bücherl D, Palatzky P, Matysik FM, Decker M, Wegener J, Heilmann J. Flavonoids, flavonoid metabolites, and phenolic acids inhibit oxidative stress in the neuronal cell line HT-22 monitored by ECIS and MTT assay: a comparative study. J Nat Prod 2014; 77: 446-454
  • 62 Bruggisser R, von Daeniken K, Jundt G, Schaffner W, Tullberg-Reinert H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 2002; 68: 445-448
  • 63 Soriano FX, Galbete JL, Forloni G. Effect of beta-amyloid on endothelial cells: lack of direct toxicity, enhancement of MTT-induced cell death and intracellular accumulation. Neurochem Int 2003; 43: 251-261
  • 64 Shoemaker M, Cohen I, Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J Ethnopharmacol 2004; 93: 381-384
  • 65 Minor LK. Label-free cell-based functional assays. Comb Chem High Throughput Screen 2008; 11: 573-580
  • 66 Xi B, Yu N, Wang X, Xu X, Abassi YA. The application of cell-based label-free technology in drug discovery. Biotechnol J 2008; 3: 484-495
  • 67 Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin Infect Dis 2014; 58 (Suppl. 01) S20-S27
  • 68 Noskin GA. Prevention of infection in immunocompromised hosts. Cancer Treat Res 1998; 96: 223-246
  • 69 Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2014; 49: 91-101
  • 70 Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov 2013; 12: 371-387
  • 71 Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007; 6: 29-40
  • 72 Chopra I. The 2012 Garrod lecture: discovery of antibacterial drugs in the 21st century. J Antimicrob Chemother 2013; 68: 496-505
  • 73 Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev 2011; 24: 71-109
  • 74 Powers JH. Antimicrobial drug development–the past, the present, and the future. Clin Microbiol Infect 2004; 10 (Suppl. 04) 23-31
  • 75 Niño J, Mosquera OM, Correa YM. Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity. Rev Biol Trop 2012; 60: 1535-1542
  • 76 Luciano-Montalvo C, Boulogne I, Gavillán-Suárez J. A screening for antimicrobial activities of Caribbean herbal remedies. BMC Complement Altern Med 2013; 13: 126
  • 77 Gertsch J. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 2011; 77: 1086-1098
  • 78 Sánchez-Hidalgo M, Pascual J, de la Cruz M, Martín J, Kath GS, Sigmund JM, Masurekar P, Vicente F, Genilloud O, Bills GF. Prescreening bacterial colonies for bioactive molecules with Janus plates, a SBS standard double-faced microbial culturing system. Antonie Van Leeuwenhoek 2012; 102: 361-374
  • 79 Berke I, Tierno PM. Comparison of efficacy and cost-effectiveness of BIOMIC VIDEO and Vitek antimicrobial susceptibility test systems for use in the clinical microbiology laboratory. J Clin Microbiol 1996; 34: 1980-1984
  • 80 Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49: 1749-1755
  • 81 Ymele-Leki P, Cao S, Sharp J, Lambert KG, McAdam AJ, Husson RN, Tamayo G, Clardy J, Watnick PI. A high-throughput screen identifies a new natural product with broad-spectrum antibacterial activity. PLoS One 2012; 7: e31307
  • 82 Xu M, Davis RA, Feng Y, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ. Ianthelliformisamines A–C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis . J Nat Prod 2012; 75: 1001-1005
  • 83 Scanlon TC, Dostal SM, Griswold KE. A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 2014; 111: 232-243
  • 84 Nybond S, Karp M, Tammela P. Antimicrobial assay optimization and validation for HTS in 384-well format using a bioluminescent E. coli K-12 strain. Eur J Pharm Sci 2013; 49: 782-789
  • 85 Osterman IA, Prokhorova IV, Sysoev VO, Boykova YV, Efremenkova OV, Svetlov MS, Kolb VA, Bogdanov AA, Sergiev PV, Dontsova OA. Attenuation-based dual-fluorescent-protein reporter for screening translation inhibitors. Antimicrob Agents Chemother 2012; 56: 1774-1783
  • 86 Auld DS, Thorne N, Nguyen DT, Inglese J. A specific mechanism for nonspecific activation in reporter-gene assays. ACS Chem Biol 2008; 3: 463-470
  • 87 Auld DS, Southall NT, Jadhav A, Johnson RL, Diller DJ, Simeonov A, Austin CP, Inglese J. Characterization of chemical libraries for luciferase inhibitory activity. J Med Chem 2008; 51: 2372-2386
  • 88 Bakhtiarova A, Taslimi P, Elliman SJ, Kosinski PA, Hubbard B, Kavana M, Kemp DM. Resveratrol inhibits firefly luciferase. Biochem Biophys Res Commun 2006; 351: 481-484
  • 89 Alvesalo J, Vuorela H, Tammela P, Leinonen M, Saikku P, Vuorela P. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem Pharmacol 2006; 71: 735-741
  • 90 Salin O, Alakurtti S, Pohjala L, Siiskonen A, Maass V, Maass M, Yli-Kauhaluoma J, Vuorela P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae . Biochem Pharmacol 2010; 80: 1141-1151
  • 91 Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, Genovesio A, Carralot JP, Ewann F, Kim EH, Lee SY, Kang S, Seo MJ, Park EJ, Skovierová H, Pham H, Riccardi G, Nam JY, Marsollier L, Kempf M, Joly-Guillou ML, Oh T, Shin WK, No Z, Nehrbass U, Brosch R, Cole ST, Brodin P. High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 2009; 5: e1000645
  • 92 Peach KC, Bray WM, Winslow D, Linington PF, Linington RG. Mechanism of action-based classification of antibiotics using high-content bacterial image analysis. Mol Biosyst 2013; 9: 1837-1848
  • 93 OʼRourke EJ, Conery AL, Moy TI. Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol 2009; 486: 57-75
  • 94 Moy TI, Conery AL, Larkins-Ford J, Wu G, Mazitschek R, Casadei G, Lewis K, Carpenter AE, Ausubel FM. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 2009; 4: 527-533
  • 95 Durai S, Vigneshwari L, Balamurugan K. Caenorhabditis elegans-based in vivo screening of bioactives from marine sponge-associated bacteria against Vibrio alginolyticus . J Appl Microbiol 2013; 115: 1329-1342
  • 96 Cheng B, Cao S, Vasquez V, Annamalai T, Tamayo-Castillo G, Clardy J, Tse-Dinh YC. Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 2013; 8: e60770
  • 97 Kim S, Lee SW, Choi EC, Choi SY. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol 2003; 61: 278-288
  • 98 Chan DC, Anderson AC. Towards species-specific antifolates. Curr Med Chem 2006; 13: 377-398
  • 99 Lewis K, Ausubel FM. Prospects for plant-derived antibacterials. Nat Biotechnol 2006; 24: 1504-1507
  • 100 Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 2007; 59: 1247-1260
  • 101 Zervosen A, Sauvage E, Frère JM, Charlier P, Luxen A. Development of new drugs for an old target: the penicillin binding proteins. Molecules 2012; 17: 12478-12505
  • 102 Bharat A, Blanchard JE, Brown ED. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis. J Biomol Screen 2013; 18: 830-836
  • 103 Ondeyka JG, Zink DL, Young K, Painter R, Kodali S, Galgoci A, Collado J, Tormo JR, Basilio A, Vicente F, Wang J, Singh SB. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J Nat Prod 2006; 69: 377-380
  • 104 Young K, Jayasuriya H, Ondeyka JG, Herath K, Zhang C, Kodali S, Galgoci A, Painter R, Brown-Driver V, Yamamoto R, Silver LL, Zheng Y, Ventura JI, Sigmund J, Ha S, Basilio A, Vicente F, Tormo JR, Pelaez F, Youngman P, Cully D, Barrett JF, Schmatz D, Singh SB, Wang J. Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 2006; 50: 519-526
  • 105 Brötz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 2010; 5: 1553-1579
  • 106 Babaoglu K, Simeonov A, Irwin JJ, Nelson ME, Feng B, Thomas CJ, Cancian L, Costi MP, Maltby DA, Jadhav A, Inglese J, Austin CP, Shoichet BK. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 2008; 51: 2502-2511
  • 107 Newton GL, Ta P, Sareen D, Fahey RC. A coupled spectrophotometric assay for l-cysteine:1-D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase and its application for inhibitor screening. Anal Biochem 2006; 353: 167-173
  • 108 Hurt JK, McQuade TJ, Emanuele A, Larsen MJ, Garcia GA. High-throughput screening of the virulence regulator VirF: a novel antibacterial target for shigellosis. J Biomol Screen 2010; 15: 379-387
  • 109 Sun H, Xu Y, Sitkiewicz I, Ma Y, Wang X, Yestrepsky BD, Huang Y, Lapadatescu MC, Larsen MJ, Larsen SD, Musser JM, Ginsburg D. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci U S A 2012; 109: 3469-3474
  • 110 Pan N, Lee C, Goguen J. High throughput screening for small-molecule inhibitors of type III secretion in Yersinia pestis . Adv Exp Med Biol 2007; 603: 367-375
  • 111 Yamazaki A, Li J, Zeng Q, Khokhani D, Hutchins WC, Yost AC, Biddle E, Toone EJ, Chen X, Yang CH. Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2012; 56: 36-43
  • 112 Rasmussen L, White EL, Pathak A, Ayala JC, Wang H, Wu JH, Benitez JA, Silva AJ. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae . Antimicrob Agents Chemother 2011; 55: 4134-4143
  • 113 Garner AL, Fullagar JL, Day JA, Cohen SM, Janda KD. Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. J Am Chem Soc 2013; 135: 10014-10017
  • 114 Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development – can a new approach be developed?. Nat Rev Drug Discov 2013; 12: 791-808
  • 115 Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22: 326-333
  • 116 Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 2010; 85: 1095-1104
  • 117 Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo . Antimicrob Agents Chemother 2011; 55: 2655-2661
  • 118 Brackman G, Celen S, Hillaert U, Van Calenbergh S, Cos P, Maes L, Nelis HJ, Coenye T. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One 2011; 6: e16084
  • 119 Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 2008; 72: 157-165
  • 120 Kwasny SM, Opperman TJ. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr Protoc Pharmacol; 2010. Chapter 13: Unit 13A.18
  • 121 Lourenço A, Coenye T, Goeres DM, Donelli G, Azevedo AS, Ceri H, Coelho FL, Flemming HC, Juhna T, Lopes SP, Oliveira R, Oliver A, Shirtliff ME, Sousa AM, Stoodley P, Pereira MO, Azevedo NF. Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces. Pathog Dis 2014; 70: 250-256
  • 122 Parker AE, Walker DK, Goeres DM, Donelli G, Azevedo AS, Ceri H, Coelho FL, Flemming HC, Juhna T, Lopes SP, Oliveira R, Oliver A, Shirtliff ME, Sousa AM, Stoodley P, Pereira MO, Azevedo NF. Ruggedness and reproducibility of the MBEC biofilm disinfectant efficacy test. J Microbiol Methods 2014; 102: 55-64
  • 123 Quave CL, Estévez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE, Smeltzer MS. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One 2012; 7: e28737
  • 124 Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 2011; 79: 4819-4827
  • 125 Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell–cell signalling, biofilmformation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010; 109: 515-527
  • 126 Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int J Mol Sci 2013; 14: 19434-19451
  • 127 Bräunlich M, Økstad OA, Slimestad R, Wangensteen H, Malterud KE, Barsett H. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus . Molecules 2013; 18: 14989-14999
  • 128 Bjarnsholt T, Jensen P, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Høiby N, Givskov M. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005; 151: 3873-3880
  • 129 Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PØ, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Høiby N, Bjarnsholt T, Givskov M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 2012; 56: 2314-2325
  • 130 Sandberg ME, Schellmann D, Brunhofer G, Erker T, Busygin I, Leino R, Vuorela PM, Fallarero A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J Microbiol Methods 2009; 78: 104-106
  • 131 Junker LM, Clardy J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother 2007; 51: 3582-3590
  • 132 Peng F, Hoek EM, Damoiseaux R. High-content screening for biofilm assays. J Biomol Screen 2010; 15: 748-754
  • 133 Peach KC, Bray WM, Shikuma NJ, Gassner NC, Lokey RS, Yildiz FH, Linington RG. An image-based 384-well high-throughput screening method for the discovery of biofilm inhibitors in Vibrio cholerae . Mol Biosyst 2011; 7: 1176-1184
  • 134 Toté K, Vanden Berghe D, Deschacht M, de Wit K, Maes L, Cos P. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents 2009; 33: 525-531
  • 135 Skogman ME, Vuorela PM, Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot (Tokyo) 2012; 65: 453-459
  • 136 Fedarovich A, Djordjevic KA, Swanson SM, Peterson YK, Nicholas RA, Davies C. High-throughput screening for novel inhibitors of Neisseria gonorrhoeae penicillin-binding protein 2. PLoS One 2012; 7: e44918
  • 137 Llano-Sotelo B, Hickerson RP, Lancaster L, Noller HF, Mankin AS. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. RNA 2009; 15: 1597-1604
  • 138 Watkins D, Norris FA, Kumar S, Arya DP. A fluorescence-based screen for ribosome binding antibiotics. Anal Biochem 2013; 434: 300-307
  • 139 Xie Y, Dix AV, Tor Y. FRET enabled real time detection of RNA-small molecule binding. J Am Chem Soc 2009; 131: 17605-17614
  • 140 Kaul M, Barbieri CM, Pilch DS. Fluorescence-based approach for detecting and characterizing antibiotic-induced conformational changes in ribosomal RNA: comparing aminoglycoside binding to prokaryotic and eukaryotic ribosomal RNA sequences. J Am Chem Soc 2004; 126: 3447-3453
  • 141 Kumar A, Zhang M, Zhu L, Liao RP, Mutai C, Hafsat S, Sherman DR, Wang MW. High-throughput screening and sensitized bacteria identify an M. tuberculosis dihydrofolate reductase inhibitor with whole cell activity. PLoS One 2012; 7: e39961
  • 142 Hevener KE, Yun MK, Qi J, Kerr ID, Babaoglu K, Hurdle JG, Balakrishna K, White SW, Lee RE. Structural studies of pterin-based inhibitors of dihydropteroate synthase. J Med Chem 2010; 53: 166-177