Synlett, Table of Contents Synlett 2015; 26(14): 2033-2036DOI: 10.1055/s-0034-1380440 letter © Georg Thieme Verlag Stuttgart · New YorkPalladium(II)-Catalyzed C–H Acylation with Arylglycine Derivatives Weizheng Fan School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China Email: fengbainian@jiangnan.edu.cn , Jiapeng Su School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China Email: fengbainian@jiangnan.edu.cn , Bainian Feng* School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China Email: fengbainian@jiangnan.edu.cn› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract A novel palladium(II)-catalyzed ortho acylation of arenes with arylglycines in the presence of Cu(OAc)2 and K2S2O8 to afford the benzophenones was developed. This direct C–H acylation is suitable for a broad range of substrates. The control experiments suggested a possible oxidative addition mechanism. Key words Key wordspalladium(II)-catalyzed - ortho acylation - arylglycine - C–H activation - oxidative addition Full Text References References and Notes For recent reviews, see: 1a Mousseau JJ, Charette AB. Acc. Chem. Res. 2013; 46: 412 1b Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236 1c Bras JL, Muzart J. Chem. Rev. 2011; 111: 1170 1d McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885 1e Baudoin O. Chem. Soc. Rev. 2011; 40: 4902 1f Wencel-Delord J, Dröge T, Kiu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740 1g Ackermann L. Chem. Rev. 2011; 111: 1315 1h Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068 1i Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147 1j Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624 1k Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094 1l Li B.-J, Yang S.-D, Shi Z.-J. Synlett 2008; 949 1m Kakiuchi F, Kochi T. Synthesis 2008; 3013 2a McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348 2b Gmouh S, Yang H, Vaultier M. Org. Lett. 2003; 5: 2219 2c Harrington PJ, Lodewijk E. Org. Process Res. Dev. 1997; 1: 72 2d Harvey G, Mader G. Collect. Czech. Chem. Commun. 1992; 57: 862 2e Sheldon RA. Chem. Ind. 1992; 903 2f Furniss BS, Hannaford AJ, Smith PW. G, Tatchell R. Vogel’s Textbook of Practical Organic Chemistry . Addison Wesley Longman; England: 1989. 5th ed. 1006 3a Heaney H In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 733 3b Olah GA. Friedel–Crafts Chemistry . Wiley; New York: 1973 3c Gore PH. Aromatic Ketone Synthesis . In Friedel–Crafts and Related Reactions . Olah GA. John Wiley; London: 1964. Part 1, Vol. 3 1 3d Gore PH. Chem. Rev. 1955; 55: 229 Selected references, see: 4a Sharghi H, Jokar M, Doroodmand MM, Khalifeh R. Adv. Synth. Catal. 2010; 352: 3031 4b de Noronha RG, Fernandes AC, Romao CC. Tetrahedron Lett. 2009; 50: 1407 4c Nishimoto Y, Babu SA, Yasuda M, Baba A. J. Org. Chem. 2008; 73: 9465 4d Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J. Catal. Commun. 2005; 6: 753 4e Hosseini Sarvari M, Sharghi H. J. Org. Chem. 2004; 69: 6953 4f Bartoli G, Bosco M, Marcantoni E, Massaceri M, Rinaldi S, Sambri L. Tetrahedron Lett. 2002; 43: 6331 4g Reetz MT, Giebel D. Angew. Chem. Int. Ed. 2000; 39: 2498 For selected examples of C–H acylation using aldehydes, see: 5a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120 5b Park J, Park E, Kim A, Lee Y, Chi K.-W, Kwak JH, Jung YH, Kim IS. Org. Lett. 2011; 13: 4390 5c Sharma S, Park E, Park J, Kim IS. Org. Lett. 2012; 14: 906 5d Sharma S, Park J, Park E, Kim A, Kim M, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2013; 355: 332 5e Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926 5f Yang Y, Zhou B, Li Y. Adv. Synth. Catal. 2012; 354: 2916 5g Sharma S, Kim A, Park J, Kim M, Kwak JH, Jung YH, Park JS, Kim IS. Org. Biomol. Chem. 2013; 11: 7869 5h Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145 5i Shin Y, Sharma S, Mishra NK, Han S, Paek J, Oh H, Ha J, Yoo H, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 594 For selected examples of C–H acylation using alcohols, see: 6a Xiao F, Shuai Q, Zhao F, Baslé O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614 6b Park J, Kim A, Sharma S, Kim M, Park E, Jeon Y, Lee Y, Kwak JH, Jung YH, Kim IS. Org. Biomol. Chem. 2013; 11: 2766 6c Kim M, Sharma S, Park J, Kim M, Choi Y, Jeon Y, Kwak JH, Kim IS. Tetrahedron 2013; 69: 6552 6d Sharma S, Kim M, Park J, Kim M, Kwak JH, Jung YH, Oh JS, Lee Y, Kim IS. Eur. J. Org. Chem. 2013; 6656 For selected examples of C–H acylation using α-oxocarboxylic acids, see: 7a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898 7b Li M, Ge H. Org. Lett. 2010; 12: 3464 7c Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358 7d Kim M, Park J, Sharma S, Kim A, Park E, Kwak JH, Jung YH, Kim IS. Chem. Commun. 2013; 49: 925 7e Park J, Kim M, Sharma S, Park E, Kim A, Lee SH, Kwak JH, Jung YH, Kim IS. Chem. Commun. 2013; 49: 1654 7f Sharma S, Kim A, Park E, Park J, Kim M, Kwak JH, Lee SH, Jung YH, Kim IS. Adv. Synth. Catal. 2013; 355: 667 7g Yu L, Li P, Wang L. Chem. Commun. 2013; 49: 2368 7h Li H, Li P, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170 7i Miao J, Ge H. Org. Lett. 2013; 15: 2930 7j Kim M, Mishra NK, Park J, Han S, Shin Y, Sharma S, Lee Y, Lee E.-K, Kwak JH, Kim IS. Chem. Commun. 2014; 50: 14249 8a Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294 8b Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689 9 Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594 10 Lu J, Zhang H, Chen X, Liu H, Jiang Y, Fu H. Adv. Synth. Catal. 2013; 355: 529 11 Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837 12 Han S, Sharma S, Park J, Kim M, Shin Y, Mishra NK, Bae JJ, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2014; 79: 275 13 Tlili A, Schranck J, Pospech J, Neumann H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 6293 14 Wang R, An C.-H, Li Y, Zhao Y, Wang T, Li A. Tetrahedron Lett. 2015; 56: 2077 15a Ditrich K. Science of Synthesis . Vol. 25. Thieme; Stuttgart: 2007: 523 15b Srogl J, Voltrova S. Org. Lett. 2009; 11: 843 16a Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature (London, U.K.) 1993; 366: 529 16b Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527 17a Arnold PL, Sanford MS, Pearson SM. J. Am. Chem. Soc. 2009; 131: 13912 17b Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145 17c Hickman AJ, Sanford MS. Nature (London, U.K.) 2012; 484: 177 17d Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412 18 Synthesis of 3a–v A mixture of 1 (0.5 mmol), 2 (0.6 mmol), DMSO (5% H2O aq, 5 mL), Pd(OAc)2 (5 mol%), Cu(OAc)2 (10 mol%), and K2S2O8 (2 equiv) was stirred at 120 °C under Ar atmosphere for 24 h. The reaction mixture was washed with H2O, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3a–d,7b 3f–k,7b 3n–s 7b). Compound 3e: yield 15%, white solid. 1H NMR (500 MHz, CDCl3): δ = 8.32 (d, J = 4.6 Hz, 1 H), 7.68 (m, 2 H), 7.52 (m, 2 H), 7.50 (m, 1 H), 7.41 (t, J = 7.2 Hz, 1 H), 7.25 (m, 2 H), 7.18 (m, 2 H), 7.0 (m, 1 H), 1.13 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 197.2, 158.0, 155.2, 148.5, 140.2, 136.8, 135.9, 131.5, 129.9, 129.3, 128.4, 127.8, 126,9, 121.3, 119.5, 114.1, 34.5, 15.8. HRMS: m/z calcd for C22H21NO: 315.1623; found: 315.1626. Supplementary Material Supplementary Material Supporting Information